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Utiliser la définition du nombre dérivé pour les questions suivantes.

1. Soit f la fonction définie pour tout x de R par f(x) = —4x—1.
Soit & # 0. Le taux d’accroissement de la fonction f entre —2 et —2 + h est donné par :
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Or, lim fle2th) - f=2) =—4.Dong, f est dérivable en -2 et f'(-2) = —4.
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2. Soit f la fonction définie pour tout x de R* par f(x) = i 2.
Soit h # 0. Le taux d’accroissement de la fonction f entre 5 et 5+ h est donné par:
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3. Soit f la fonction définie pour tout x de R par f(x) = x> — 1.

Soit /i # 0. Le taux d’accroissement de la fonction f entre —1 et —1 + h est donné par :
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= -2+h.

Or, lim fettm - fD

lim > =—2.Dong, f est dérivable en —1 et f'(-1) = -2.

4. Soit f la fonction définie pour tout x de R* par f(x) = g
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Soit i # 0. Le taux d’accroissement de la fonction f entre 1 et 1 + h est donné par:
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Or, }lin})w = = Donc, f est dérivableen 1 et f'(1) = 5

mm  Frercice? \

Soit g la fonction définie sur R par g(x) = x> —4x +5.
1. Pourtout h#0,0ona:

2
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o Percice3

Soit f la fonction définie sur R par: f(x) = 3x> +5x + 4

2. =2, donc g est dérivable en 3 et g'(3) = 2.

1. Pourtoutréel h#0,0na:
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2. lim Jeri=e

lim - =17, donc f est dérivable en 2 et f'(2) = 17.




o Perciced

1
f estla fonction définie sur R\{0} par: f(x) = x——.
X
1. Pourtout htelque h#0etl+h>0,0na:
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2. Pourtout htelque h#0et 1+ h>0,le taux d'accroissement de f entre 1 et 1 + & est donné par :
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Or, lim —f(l i+10)= 710

lim Y =2, donc f est dérivableen 1 et f'(1) = 2.

o Percices

Montrer que la fonction f définie par: f(x) = 2v/x — 3 n’est pas dérivable en 3.
Soit i > 0. Le taux d’accroissement de la fonction f entre 3 et 3+ h est donné par :
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Or, }lin}) w ¢ R, donc f n’est pas dérivable en 3.

Montrer que la fonction f définie par f(x) = x> — x dérivable en 4.
Soit i > 0. Le taux d’accroissement de la fonction f entre 4 et 4 + h est donné par :
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Or, lim

4 - f4
h' 1 W =47, donc f est dérivable en 4 et f'(4) = 47.

Soit une fonction g définie et dérivable sur R telle que g(4) = —1 et g'(4) = 2.
L'équation réduite de la tangente a € au point d’abscisse 4, est donnée par :

y = §@x-9+g@
= 2(x-4)-1
= 2x-8-1
= 2x-9.

Exercice 8

Soit une fonction f définie et dérivable sur R telle que f’(2) = 17. Sa courbe représentative € passe par le point
AR2; 7).

L'équation réduite de la tangente a ¢ au point d’abscisse 2, est donnée par :

y = ff@Qx-2+f@2)
= 17(x-2)+7
= 17x-34+7
= 17x-27.

La fonction f représentée ci-contre est dérivable pour

tout nombre a.
1. Selon la représentation graphique, f'(-2) = 0 et
f'(1) =0, car les deux tangentes aux points B et C

sont horizgnt?lezs). A
Tl o
S -5—-(=3) -2

2. L'équation réduite de la tangente 9~ a € au point
A d’abscisse —4, est donnée par :

F=Dx—- () + f(-4)

—2(x+4)+0

—2x-8.

y




La fonction f représentée ci-contre est dérivable pour
tout nombre a.

1. Selon la représentation graphique, f(1) = 0 et

'y 2
fm=2=1

2. Léquation réduite de la tangente 97 a €y au
point B d’abscisse 1, est donnée par :

y = ff{x-D+fQ)
= 1x-1D+0
= x-1.

3. Selon la représentation graphique, f(-1) = 2 et
4
'-)=-=1.
=0 2

4. L'équation réduite de la tangente I, a € au

point 1 d’abscisse —1, est donnée par :

y = fl-Dx+D+f(-D
= 1x+1)+2
= x+3.

La courbe ci-contre représente la fonction f dont I'ex-
pression est de la forme :

f(x) = ax® + bx +c.
1. Selon la représentation graphique,
-4
fO=-2 f@) =4 [0 = — =2
4
f@=-2etf'@= 5 =2.

2. L'équation réduite de la tangente 97 a € au
point d’abscisse 0, est donnée par :

£0)(x—0)+ f(0)
—2x—2.

y

3. L'équation réduite de la tangente J, a
point d’abscisse 4, est donnée par :
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X
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y = fl@Wx-9+f@)
= 2(x—-4)-2
= 2x-10.

4. Ona: f(0) = ¢ = —2. Par ailleurs,

{f(2)=—4 {4a+2b—2=—4
p=—2

f(4)=—2 16a+4b—-2=-2
4a+2b=-2
16a+4b=0

2a+b=-1
4a+b=0

Par soustraction des deux égalités, membre par
. . 1

membre, on obtient : 2a = 1. Soit, a = —.

Et par substitution, dans la deuxiéme équation,

onobtient: b=—-4a=—-4x 5 =-2.

. Pour déterminer les abscisses des points A et B, il

1
suffit de résoudre I'équation Exz —-2x-2=0.
Le discriminant de cette équation est égal a :
1
A=b?—4ac=(-2)*-4x 5 x (=2 =8.
A étant positif, cette équation admet deux solu-
tions : /B /B
2—-v8 2++v8
=2-2V2etx, = :
2x = 2 x =
2 2

Ainsi, x; et xp sont respectivement les abscisses
de Aet B.

=2+2V2.
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