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Exercice 1 : (5 points) / |

Les cinq questions indépendantes.

On sait que : P(AN B) = P(A) + P(B) — P(AU B) et P(A) =1 — P(A). Ainsi,

P(AnB) = 1—-P(A)+P(B)—-P(AUB)
= 1-0,74+04-0,5
= 0.2.

D’apres la formule des probabilités totales, on a : P(B) = P(AN B) + P(AN B).
Or, P(B) = 0,6 et P(AN B) =0,2. Donc, P(ANB) = P(B) — P(ANB) =0,6 —0,2=0,4

On sait que :

P(ANnB) = P(A)+P(B)—P(AUB)
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Par ailleurs, P(A) x P(B) = = X 55 = Ta0- Etant donné que : P(AN B) # P(A) x P(B), les deux
événements ne sont pas indépendants.
—. P(BnA
Par définition, on a : P4(B) = (P(Z))
De plus, selon la formule des probabilités totales, on a : P(AN B) = P(A) — P(AN B). Ainsi,
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Par définition, on a : P5(A) = (77)
P(B)
De plus, en utilisant la formule des probabilités totales, on obtient : P(BN A) = P(B) — P(AN B).

Des lors,

P(B) — P(ANB)
P(B)
- P(ANB)
P(B)
== (A par définition
1 - P(A), A et B sont indépendants
= P(A).

P5(4)

Par conséquent, A et B sont indépendants.
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Exercice 2 : (3 points) /

Dans tout 'exercice, les résultats seront arrondis, si nécessaire, au dix millieme.

On étudie un test de dépistage pour une certaine maladie dans une population donnée. On sait que 1% de
la population est atteint de la maladie. Des études ont montré que si une personne est malade, alors le test
se révele positif dans 97% des cas et si une personne n’est pas malade, le test est négatif dans 98% des cas.
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Pour une personne a qui ont fait passer le test de dépistage on associe les événements :
— M : la personne est malade,
— T : le test est positif.

L’arbre de probabilité résumant cette situation est le suivant :
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Par définition, on a :

P(MNT) = P(M) x Py(T)
= 0,99 x 0,02
P(MNT)=0,0198.

D’apres la formule des probabilités totales,

P(T)=P(MNT)+PMNT)
= P(M) x Py(T) + P(M) x Py(T)
= 0,01 x 0,97 40,0198
= 0,0097 + 0,0198

P(T) = 0,0295.

D’apres la définition de la probabilité conditionnelle, on a. :
P(MNT)
Pr(M)= ——=
_0,0097
©0,0295
Pp(M) =~ 0,3288.

Exercice 3 : (5 points) /

Cette année, 300 000 étudiants sont en prépa ou en BTS. Parmi eux, on compte 180 000 garcons dont 25 %
sont en prépa. Par ailleurs 80 % des filles sont en BTS. On prend au hasard un étudiant et ’on nomme :
G « Iétudiant est un garcon », F « I’étudiant est une fille », A « I’étudiant est en prépa » et B « I’étudiant
est en BTS. »
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Soit G’ I’événement « D’étudiant est un garcon en prépa. » Ainsi,

P(G) = P(GNA)
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3 1
= — X —
5 4
]
20
3
@ Par définition, on a : Pg(A) = P(;l(g)G) Ainsi, Pg(A) = % = % ;
5
@ Par définition, on a : Pg(F) = P(]f(g)F)

Et, d’apres la formule des probabilités totales, on a :

P(B) = P(BNF)+P(BNG)
= P(F)Pr(B)+ P(G)Ps(B)
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Ainsi, Pg(F) = 22 = —_.
=
P(ANG)

@ Par définition, on a : P4(G) = PA)

Ainsi, Et, d’apres la formule des probabilités totales, on a :

P(A) = P(ANF)+P(ANG)

= P(F)Pp(A) + P(G)Pg(A)
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Ainsi, P4(G) = & = _—.
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Exercice 4 : (5 points) /

Les résultats seront donnés sous forme de fractions irréductibles.

Une enquéte a été menée aupres de lycéens pour estimer la proportion de ceux qui ont déja consommé du
cannabis. Pour encourager les réponses sinceres, on met en place le protocole suivant : chaque adolescent
lance d’abord un dé équilibré a 6 faces et 'enquéteur qui va l'interroger ne connait pas le résultat du lancer.
A la question « Avez-vous déja consommé du cannabis ? », Padolescent doit répondre :

— «non » si le résultat du lancer est 5, qu’il ait ou non déja consommé du cannabis ;

— « oui » si le résultat du lancer est 6, qu’il ait ou non déja consommé du cannabis ;

— «oui » ou « non » dans les autres cas, mais de facon sincere.
On note :

— N : I’évenement ’adolescent a répondu « non » ;

— O : I’événement 'adolescent a répondu « oui » ;

— (' : I’événement I'adolescent a déja consommé effectivement du cannabis ;

N




— (C : I’évéenement I’adolescent n’a jamais consommé du cannabis.
Sur les lycéens qui ont participé a cette enquéte on constate que la probabilité qu'un adolescent ait répondu

« oui » est de g, soit P(O) = g

On veut déterminer la probabilité, notée p, qu'un adolescent ait déja consommé du cannabis.
On a donc P(C) = p.

On considere un lycéen n’ayant jamais consommé de cannabis. Alors, il répond « Oui » au questionnaire
uniquement s’il obtient un « 6 » au lancer de dé.

Donc la probabilité qu’un adolescent ait répondu « oui » sachant qu’il n’a jamais consommé de cannabis
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@ D’apres la formule des probabilités totales,

P(0) = P(C) x Po(0) + P(C) x P=(0).

Autrement dit,
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Ainsi, sachant qu’un adolescent a répondu « non » pendant ’enquéte, la probabilité qu’il n’ait jamais

, : , . 35
consommé de cannabis est égale a TR

—




Exercice 5 : (2 points) /

Un site internet propose un jeu en ligne dont probabilités sont les suivantes :

2
— si 'internaute gagne une partie, la probabilité qu’il gagne la partie suivante vaut —.

4
— si I'internaute perd une partie, la probabilité qu’il perde la partie suivante vaut —.

Pour tout entier naturel non nul n, on désigne par G,, ’événement « l'internaute gagne la n-iéme partie » et
on note p, la probabilité de I’événement G,,. L’internaute gagne toujours la premiere partie et donc p; = 1.

Ci-dessous ’arbre pondéré complété.
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En utilisant la formule des probabiltés totales, on obtient :

Pny1 = P(Gnyr)
= P(Gn N Gn+1) + P(Gn N Gn+1)

= P(Gn)Pc,(Gnt1) + P(Gn)Pén (Gr1)
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Exercice bonus : (1 point) /

On définit les deux événements suivants. B : « la boule tirée est blanche » et N : « la boule tirée est noire ».

L’arbre pondéré suivant modélise la situation :
1
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On note A I’événement : « les deux boules tirées sont de la méme couleur ».
D’apres la formule des probabilités totales, on a :
3 n+3 1 n+1 4n+10

P(A)= P(BAB)+P(NAN) =2 x 212 2 - .
(4) = P( )+ P Ry i Ry e T

3
En résolvant 1’équation P(A) = 7 o0 obtient n = 2.
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