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Exercice n°1

1. On souhaite résoudre I’équation différentielle :
v +my=1.
On applique le résultat du cours; les solutions
sont alors :

2. On souhaite résoudre I'équation différentielle (E) :
y — by =umx.
— L’équation homogene associée (Eg) : y’' — 5y =
0 admet pour solutions :

yo(x) = Ce>®, C €R.

— On cherche une solution particuliere de (E) de
la forme u(z) = az + b (car le second membre
de (E) est une fonction affine). Ainsi,

u(z) —Su(z) =2 < a—5(ax+b) =2z

< —baxr+ (a—5b) =z
1
a=—3z
= g
a—5b=0
1
a=—%
= ;
b = —2—5
Par conséquent, u(z) = —% — 5= est une solu-

tion particuliere de (E).
— On en déduit alors que les solutions de (E)
sont :
z 1

y(z) = —= — = + Ce**,

R.
5 2 Ue

Exercice n°2

1. L’équation y' = 3y — 9 est une équation différen-
tielle du type ' = ay + b donc d’apres le cours,
les solutions de cette équation sont les fonctions :

-9

y(:v):Ce?’m—?, CeR
soit, apres simplification :
y(z) = Ce®® + 3, CeR
On vérifie en calculant :
y'(z) — 3y(z) = 3Ce® — 3(Ce® +3)
=3Ce* —3Ce* -9

= 9.

On a bien 3’ — 3y = —9, soit ' = 3y — 9.
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2. On pose (E) : ¢/ =2y — 23.

1 3 3 3

_ 13,22, ° 2

(a) yi(z) = 5%+ 4% +4x+8.

3 3 3

! — T2 = =

Donc, yj(z) = 5% + 2x+4.
On a alors :

y1(2) — 2y (x)
3, 3 3 1, 3, 3 3

= 3" +5“1‘2<§‘” T +z“§>

== —.T3.

Ainsi, ¥} (z) = 2y1(x) — 23. La fonction y; est donc
une solution de (E).

De la solution particuliére y; (x), on déduit que I’en-
semble des solutions de (E) sont les fonctions :

y(r) = y1(x) + yo(z)

ol yo(z) sont les solutions de ’équation homogene
associée a (E), donc de la forme :

yo(x) = Ce®, CeR.

Ainsi, les solutions de (E) sont :

P =z =z =z z R.
y(:c) 23: +4x + m+8~|—C'e s Ce

Exercice n°3

On souhaite résoudre I’équation différentielle sui-

vante :
y —2y = Tsinx. (E)
1. D’aprés le cours, (Ep) a pour solutions : yo(x) = Ce?®,
ou C eR.
2. (a) f(z) =acosx+bsinz = f'(r) = —asinz +bcosz.

f solution de (E)

< f'(z) —2f(z) =Tsinz

<= —asinz +bcosx —2(acosz + bsinz) = Tsinz
<~ (—2a+b)cosz+ (—a—2b—"T)sinz =0
—

—2a+b=0
—a—2b=7
PN b=2a
—a—2(2a) =7
b=2a
<~ _ 7
=75
14
b:—g
<~ a__7
5
Ainsi,

14 7
flz)= —p 08T — gsinx

est une solution particuliere de (E).


https://maths-mde.fr/images/CorrigeExoIntegralesTleSpe.pdf
https://maths-mde.fr/images/ExoIntegralesTleSpe.pdf

1.

2.

. F(x) = 5.
3

(b) On déduit de ce qui précede que ’ensemble des so-
lutions de (E) est 'ensemble des fonctions :

14 7
ylx) = — 08T — gsinx—i—CeQ’”, CeR

On souhaite résoudre I’équation différentielle sui-
vante :
y' + 5y = 12cos z. (E)

D’apreés le cours, (Ep) a pour solutions : yo(z) = Ce™5%,
ou C e R.

(a) f(z) =acosz+bsinx = f'(x) = —asinz +bcos z.

f solution de (E)
— f'(x) +5f(z) = 12cosx

—asinz + beosx + 5(acosx + bsinz) = 12cosx

—
<= (ba+b—12)cosz + (—a+5b)sinz =0
<~

5a+b=12
a = 5b
26b = 12
—
a = bb
_ 6
— b_ﬁ
_ 30
=13
Ainsi,
f(@) =33 cosw + S sina.

est une solution particuliére de (E).

(b) On déduit de ce qui précéde que ’ensemble des so-
lutions de (E) est 'ensemble des fonctions :

y(z) = B cosz + L sinz + Ce™™, C €R.

Voici une primitive de chacune des fonctions f.

1 3
X 53:2 + 2z = 5952 + 2.

1
. F(x):—8><§172—3;1::—4z2—3x.

1 1 7
F(z) = —3 X 6x6+8x Zx4—§x2+x = —Ex6+2x4—
zx2+x
2
F(z)=¢€"
1
F(z) = 5621
F(z) = In (2 + x4+ 1) car si u(z) = 2 + = + 1, alors
f) = =)
()’
5 2z 5u 5
= —— _—_— = = 1
f(x) % X 21 5 Ave u(z) = 2% + 1 donc
F(x)z—iln(zZ—Fl).

10. f(z) = -3 x (_Ilz) donc F(z) = —3 x 1 —é.

x €T

Voici les intégrales calculées.

1. Cherchons avant tout une primitive de
e’ +1
f@)= o1
Si on pose u(z) = €* + x + 1, alors u/(x) = ¢* + 1 donc
ul

f=2
u
Par conséquent, une primitive de f est F' = In(u), soit :

F(x):ln(e”’—&—x—l—l).

Alinsi,

1 x

1

/ e+l dx = F(1) — F(0)
o eC+x+1

=1In(e + 2) — In(2)
1 x
/¢d$=1n ct2 .
o ¥ +z+1 2

ax+b

2. Une primitive de e est :

1
f(x) = ™™ — F(x) = - t?.
a

1
Ainsi, une primitive de f(z) = e***! est F(z) = §€2z+1

et donc :

1
avec F'(z) =" + 5392 — 3z

25 9
= 5 7—1 - 3 -
(e + B 5) (e —|—2 9)

5
e +x—3)de=¢e>—e+2.
( )
3

I 3
4. [1 (32® — 22) dz = F(1) — F(-1), avec F(z) = Zm‘* —x

1
/ (3x3 - 2:5) dx = 0.
rerlnarque :

Il n’est pas incohérent de trouver une intégrale égale a
0. Cela signifie que sur l'intervalle considéré, la courbe
représentative de la fonction est tantdt positive, tantot
négative, et que laire des parties sous ’axe des abscisses
est égale a celle des parties au-dessus :



__________ 1 B(z—1)

@=Df@) = GiaE—9 T
Clz—1)
x—3
. 1
Si z =1, cela nous donne : e Al
> 1 Az +2) Cz+2)
méme aire 1 — ($+2)f($):(x_1)(x_3): 1 + T_3 -
H 1
i Si 2 = —2, cela nous donne : — = B.
: 1 Alz — 3)
1 J— _ 3 — - — - @7
____________ ! (@ = 3 (@— 1) +2) r—1
Blx —
B3 , ¢
T+ 2
1
1. F(z) =zlnz — . Si z = 3, cela nous donne : E:C.
F est une primitive de f si F/ = f. Ainsi
1 —1 1 1
Fl(z)=1xhe+ax-——1=hez+1-1= flz) = + + )
73 _ _
o= f(z) 6(zx—1)  15(z+2)  10(z—3)
Ainsi, F' est bien une primitive de f. 5
e 4. / f(x) dx
2. / Inz dx = F(e) — F(1) 4
L _1/5da:+15dx+15dx
=(elne—¢)—(1ln1-1) T 6y z-1"15), 212710/, z-3
=(exl—e)—(1x0-1)
=0- <_1) 1 5 1 5 1 5
e - :fg[ln(xf1)]4+T5[1n(x+2)]4+E[ln(xfii)h
Inx dz =1.
1
L 04— m3)+ L (In7—1n6)+ = (n2—1In1)
=——(In4—1In — (In7—1In — (In2—1In1).
6 15 10
5
Soit f une fonction définie par : / f(x) dz
4
1 1 1 1 1 1 1
1. Soit P(z) = 2® — 22® — 5z 4+ 6. Alors, P(1) = 1% — 2 x 1 3 1
12-5x14+6=0. =%1n3—1—01n2+1—51n7
Ainsi, o = 1 est une racine de P.
2. De la question précédente, on peut conclure que P(z) = 1 147
(2 — 1)(z? + bz + 0). = o <512)
En développant, on a :
P(z) = 2% + ba® + cx — 2> — bz — ¢
— P4 (b—1)22 + (c— bz —c. Soit la fonction f définie sur R par :
Par identification, on a alors : fz) = e
1+e®
b—1=-2
c—b=-5 1. On peut compter entre 138 et 140 petits carreaux dans
—c=6 le domaine colorié.

Or, 1 petit carreau correspond a 0,1 x 0,1 = 0,01 unité
Soit b = —1 et ¢ = —6. Ainsi, P(z) = (z—1)(z% — 2 —6). b - DEUT catieatl CoTesbon o

d’aire.
Le .dlscrlrr.nnant du second facteur est A = 25, d’ou les 140 x 001 = 14 donc on peut écrite que
racines suivantes : ;
1-vVA 1+vVA / f(z) de~14
8= =-2 et v = =3. —2
2 2
Les trois racines de P sont donca =1, = —2 et v = 3.
3. Déterminons les réels A, B et C tels que :
1 A B C

fla) = - L2

(z—D(z+2)(z-3) 2-1 z+2 z-3



Ainsi, fllo f(z) dz > 0,5.

1 1 1+ T
" 14z zxz+1) z(l+2)
1tz —x
ox(z+1)
= f(z).

3. /10 f(z) de = F(10) — F(1), avec F(z) =Ilnz —In(x + 1)
1

=In10—-In1l—(In1—1n2)
=Inl0—-In11+1n2

~ 0,5978.
2. ¥ — e’ :ez(1+6m)_ e’
Lret zl + Qez - Ler On a représenté ci-dessous les courbes représentatives
— e te” —e des fonctions f et g définies par :
1+4e®
2 1

= o flz) =~ et g(x):0,5x2—m+1.

1+4+e® a5
= f(z).

=el—In (1+61) — [672 —In (1 +e*2)]
:e—ln(1+e)—e_2+ln(1+e_2)

1 -2
[2f(x) dxequLln(ll—:_ee >

a la calculatrice, on trouve f_12 f(z) dz ~ 1,3966.

Soit la fonction f définie sur R par :

1
f@) = r(z+1) 1. « est la solution de 'équation f(z) = g(x).

Sa courbe représentative sur [0;10] est donnée ci-

1
dessous : fl@)=g(z) = o= 0,522 —z+1

— 1=052° -2’4z
<= 0,5x3—x2+x—120.
Posons :
h(x) = 0,503 — 22 +x — 1.

Alors,
B (z) = 1,52% — 2z + 1.

Le discriminant de h'(x) est :
A=4-6=-2<0

: donc B/(x) est toujours du signe de « 1,5 », soit toujours
Ainsi, h est strictement croissante sur R.

h est continue et croissante sur [1;2]; de plus, h(1) =

1. Un petit rectangle de la grille représente 0,25 x 0,1 = —0,5 < 0et ~(2) =1 >0 donc 0 € [h(1); h(2)].
0,025 unité d’aire. Par conséquent, d’apres le corollaire du théoreme des
Nous pouvons compter un peu plus de 20 de ces rec- valeurs intermédiaires, 1’équation h(z) = 0 admet une
tangles dans le domaine colorié, ce qui nous laisse & pen- unique solution sur[1;2]. C’est cette valeur que 'on note
ser que celui-ci a une aire supérieure a 20 x 0,025 = 0,5 Q.

unité d’aire. On trouve a la calculatrice o ~ 1,54.




2. Sur [0,25; ¢, f(x) > g(x) donc aire a gauche correspond

A

1. f est de la forme u

a focf% [f(z) — g(z)] dz. Posons :

x
Une primitive de u(z) est :

1 1 1 1
U(,ZE) = 1n($)—0,5><§173+§1'2—[17 = ln(x)—6x3+§$2_x

~ 0,53 — (—1,6)

~ 1,07.
Sur [o;al, g(x) > f(z) donc l'aire & droite correspond &
5 lo(@) = f(@)] da.
Une primitive de g(x) — f(x) est —U(z) (U(x) ayant été
calculée précédemment) donc :

/a [g(x) — f(x)] dx = -U(a) — (— U(a))

1 1
= —ln(a) + ga?) - 5@2 +a— 0,53

On cherche a déterminer a telle que fooj% [g(z) —
f(@)] do = [7 [g(z) — f(x)] dz,cest-a-dire telle que :

a

/ o) ~ £@)] da = [

1 1
<« —In(a)+ 6a?’ - 5a2 +a—0,53 =1,07

[9(x) = f(2)] dz

1 1
< —In(a)+ ga?’ - iaz +a—16=0.

Bien siir, il est hors de question de résoudre cette équa-

tion algébriquement. On prend donc la calculatrice et

on lui demande d’afficher les valeurs (par pas de 0,01) de
1

la fonction  — —In(x) + gx?’ - ixz + 2 — 1,6 & partir

de x = 2 (par exemple) car on peut imaginer que a > 2

d’apres la représentation graphique.

On trouve alors que a =~ 2,85.

L’objectif de cet exercice est de déterminer une ap-
proximation de l'aire du domaine D défini par :

D={0<2<1,0<y< fla)}

ou

VeeR,  f(z) = (In(1+2))>

On note C la courbe représentative de f dans un repere
orthonormé (O; i ; j) avec pour unité graphique :
Il =1sll=10cm.

étude des variations de la fonction

2 avec u(z) = In(z + 1).

Donc f/ = 2u'u, avec v/ (z) =

D’ou :

x+1

_ 2In(z+1)

f'(@) z+1

(0,52°—z+1) = %—075m2+x—1.

N

Siz>0,alorsz+12>1etdoncln(z+1)>0.
Ainsi, f'(x) est strictement positive donc f est stricte-
ment croissante sur [0; +00[.

. f(0)=(n(041))>=0et f(1) = (In(1+1))* =In2. On

a le tableau de variations suivant :

5 0 1|
In2
f /
0 I
21 1
. f1(0) = % = 0 donc la tangente & C en 0 est

horizontale. Or, f(0) = 0 donc T est I'axe des abscisses.

0,5 c

Y

Y

B : Calcul de Papproximation de l’aire

1.

‘ >
>

O Ro Ri R R3s Rs Rs Rs Rr Rs Rgi

2. L’aire du rectangle Ry est :

1 k
Ak_lef<10>’

1 k
ou o représente la mesure de la largeur et f (10) sa

longueur.
La somme des aires des rectangles est :

° 1 k
A:mef<10)

~ 0,165 x 100 cm?
A ~ 16,487 cm?.



=2(In2)?> —4In2 +4
~ 0,188.

L’aire de D est donc égale & 2(In2)? —41n2+4 u.a., soit
environ 0,188 u.a.

Un bouchon de péche est obtenu a partir d’une courbe
que 'on a fait tourner autour de ’axe des abscisses.

-1 0

[SIE

L’équation de la courbe est :

flx)=v1—2a2 |ze[-1;0]
2 [0 5]

o | F (@) da

volume de la demie-sphére de rayon 1

2 z
—W+7r/ cos® x dx
3 0

2 3 /1 1
zg—i—ﬁ/o (2cos2m+2) dzx

27 77[1. }
= —+ - |zsin2zx + 2

[ME]

322 o

or w2

3+4

On considere 'intégrale :

4
I:/ Vidxr — 22 dx.
0

Considérons la fonction f(x) = v4x — x2 définie sur [0;4].
Sa représentation graphique est un demi-cercle de centre
A(2;0) situé au-dessus de I’axe des abscisses.

En effet, on a :

4z — 22,

o

Il

8

(3]

|

~

g8

J’_

<
e e e e «©
A\VARR\VARR \VARR\VARR\V]
o O O o O

4:(x_2)2+y2a

Cette derniére équation cartésienne est celle du demi-cercle

de centre A(2;0) et de rayon r = 2.
2

wr
Ainsi, I représente 'aire de ce demi-cercle. Donc I = - soit
I =2m.

Intégration par parties.

1. I= ff 2/ dx. Posons :

2 4
5 1
ZI=2 [
=223
4 1
I=_(2v2-_
5 (22-3)
_ 8V2-2

1
)

2. J= fol xe® dx. Posons :

u(z) =z u'(z) =1
v'(z) =¢€" v(x) = €.
Alors,

|
)
|
—
)
|
—_
~

J=1.

3. K = [{ zIn(z) dx. Posons :



u(x) = In(z)
vz) ==
Alors,
K = [(w)(2)]
_ {1
2
= %ez - %
= %ez - i
2
K- e 2— 1

= | =a? lnz(az)} —/xln(m)dm
1 —_—
=K
1, e+1
= —e —
2 4
Aty
4

Intégration par parties.

S = foﬁ sin(z)e” dz. Posons :

Calculons alors I en posant :

u(x) = cos(x)
v'(x) =e*

I = [cos(z)e”]

(=N

(=N

[ cos(z)e”]

[=INE

[ cos(z)e”]

=I
u'(z) = —sin(z)
v(z) =e*

Ainsi,
S = [sin(x)e“’]o% - ([cos(x)e“"]o% + S)
S = [Sin(m)ez]f - [cos(x)eﬂf -5
28 = [sin(z)e” — cos(:v)ez}o%
S = %[(sin(x) — cos(ac))e””]oZ
S = %( (sin% — cos %) et — (sin0 — cos0) 60>
=0 =-1

1

S = 3

On cherche a exprimer pour tout entier naturel n > 1
Iintégrale I,, définie par :

e
I, :/ x(lnm)n dx.
1

Nous avons trouvé I et Is dans ’exercice précédent.

1. Posons :
n n—1
u(z) = (Inz) () = n(Inz)
x
L,
v(z) == v(z) = DRl
Alors,

I, = [(w)(2)]] — /1E u(x)v'(z) dx

|

1 2 n € n € n—1
596 (ln:r) ]1—2/1 x(lnm) dzr
2 n

IL,=——=-I,_1.
2 2t
2. Nous avions trouvé dans l’exercice précédent :
1 — 42 4 ’
e 1
— ===
T4 4

A T'aide de la relation de récurrence trouvée a la question
précédente, on déduit :

8T T2 27 \4 4) 88
7[_62 4 €2+3 e 3
T2 2\ 8 "8) 4w
s N 2
T2 2\2 1) 8%
e n
3. De la relation de récurrence I,, = 5~ §In,1 et de la
supposition que I,, = ane? + b, nous pouvons déduire :
e n+1
In—i-l:?_ 2 In
e n+1
i (ane? +by)
_f_(n+1)an2_n+1b
2 2 2 "
1-(n+a, 4 n+1
= — by,
2 ¢ 2



Or,
2
InJrl = Qp41€ + anrl-

Ainsi, par identification, on a :

1—(n+1a, n+1
Ap41 = % et bpi1 = — 9 bn
1 11 U 1 s s 1z
b= 1 et (—1) JiF T T donc la propriété & démon-

trer est vraie pour n = 1.

Supposons qu’elle le soit pour un entier k£ > 1 fixé, c’est-
a-dire que :

Pour calculer I'intégrale foi xsin 2z dz, il est nécessaire
de procéder a une seconde intégration par parties. Po-
sons :

1
s(z)=x et t(x)= 5 cos 2x.
Alors :
s(x)=1 et t'(z)=—sin2z.
Les fonctions s et t étant dérivables, & dérivée continue
sur 'intervalle [0, g} , on a, par le théoréeme d’intégration

par parties :

5
K = —/ Tsin2x dx
0

k!
_ k+1 x .
bk - (_1) 2k+1"° (HR) B 1 37 B 5 1
= |z=cos2zx cos 2x dx
Alors, 2 0 o 2
T 1. Bl
1 =—7—7[81n2x]
b1 = —i(k + 1)bgy1 d’apres la relation de récurrence sur (by,) ﬁ_ 4 0
1 k1 K e
:—i(k—i-l)x(—l) ST

(71)“2]@! x (k+1)
- 2 % 2k+1
(k’—l—l)!

_ k42
= DT

La propriété est donc héréditaire.

Ainsi, la propriété est vraie pour tout entier n > 1.

. Cette question est tres difficile. Il est donc normal d’avoir
des difficultés a écrire un tel programme. J’ai décidé
d’utiliser les formules explicites de a,, et b, pour trou-
ver la valeur exacte de I,,, pour un entier n > 1 donné.
Cela donne par exemple :

1. En intégrant deux fois par parties, calculer K =

™

El
/ 2% cos 2z dx.
0

2. On note :

™

™
El Fl
I :/ 2rcos’z dr et J :/ 22 sin? z dz.
0 0

(a) Calculer I + J.
(b) Calculer I —J.
(¢) En déduire I et J.

. Posons pour x € [0; g] :

u(z) = 2*

1.
et wv(z)= 5 sin 2x.
Alors :

u'(x) =2z et v'(x)=cos2x.

Les fonctions u et v sont dérivables sur I'intervalle [O, g]
et les fonctions v’ et v’ sont continues sur ce méme in-
tervalle. Donc, par le théoreme d’intégration par parties,
on a :

™

3 1 3 z
K:/ 2% cos 2z dx = {xQSiHZx} —/ xsin2x dx.
0 2 0 0
| S —
=0

2. (a) Par linéarité de lintégrale, on a :

3 3 1 .12
I+J = / x? (cos2 T + sin? J;) dx = / 22 dx = {x?’}
0 0 3 0
On sait que pour tout z,
cos 2z = cos? z — sin? x.

Donc, d’apres 2a, par linéarité de I'intégrale, on a :

™

3 5
I—J:/ z? (cos? v — sin® ) dx:/ 2% cos 2z dx = —
0 0

(b) On en déduit que :

w
w

==

18 et |J=—+—=1|

48 8

ool X

Une machine-outil achetée neuve 10 000 € admet un
prix de revente modélisé par la fonction f définie par :

f(z) = 10e02®

ot f(x) est exprimé en millier d’euros et x en années.

Déterminer le prix de revente moyen de cette machine sur 8
ans depuis sa date d’achat.

Le prix de revente moyen est donné par la valeur moyenne de
fsur [0;8] :

8
uzﬁ/o f(z) da

1 8
= 7/ 10e792% dg
8 Jo

avec F(z) = 10 x < ) e V2 = 50027

-0,2
— é[* 50670,2><8 7( _ 50670,2><0 )]
— 7@ —1,6 @
R
~ 4,988.



On peut donc estimer a 4988 € le prix moyen de revente de
cette machine-outil sur 8 ans.

En prenant comme année de référence 1’an 2000, le
nombre d’habitants en fin d’année 2000+ x d’une ville
nouvelle est approchée par la fonction :

f(l') — 1860,0341:

o f(z) est exprimé en millier d’habitants.

La population moyenne de la ville entre 2050 et 2080 est la
valeur moyenne de f sur [50;80] :

1 %0 0,034
= [ 10031 ¢
H= 80— 50 /50 ¢ v
1
= —|F(80) — F(50
S [F(80) ~ F(50)],
1 )
avec F'(z) = 10 x meo’%“ _ %?060,03455
_ 1 % M[e0,0?AXSO _ 60,034><50]
30 17
~ 95,161.

On peut donc estimer a 95161 le nombre moyen d’habitants
de cette ville entre 2050 et 2080.



