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Corrigés

Série d’exercices Classe : Terminale Maths Spé Lycée : Evariste Galois

Équations différentielles et primitives

■Exercice n◦1

1. On souhaite résoudre l’équation différentielle :
y′ + πy = 1.
On applique le résultat du cours ; les solutions
sont alors :

y(x) = Ce−πx +
1

π
, C ∈ R.

2. On souhaite résoudre l’équation différentielle (E) :
y′ − 5y = x.
— L’équation homogène associée (E0) : y

′−5y =
0 admet pour solutions :

y0(x) = Ce5x, C ∈ R.

— On cherche une solution particulière de (E) de
la forme u(x) = ax+ b (car le second membre
de (E) est une fonction affine). Ainsi,

u′(x)− 5u(x) = x ⇐⇒ a− 5(ax+ b) = x

⇐⇒ −5ax+ (a− 5b) = x

⇐⇒

{
a = − 1

5

a− 5b = 0

⇐⇒

a = − 1
5

b = − 1
25

Par conséquent, u(x) = −x
5 − 1

25 est une solu-
tion particulière de (E).

— On en déduit alors que les solutions de (E)
sont :

y(x) = −x

5
− 1

25
+ Ce5x, C ∈ R.

■Exercice n◦2

1. L’équation y′ = 3y − 9 est une équation différen-
tielle du type y′ = ay + b donc d’après le cours,
les solutions de cette équation sont les fonctions :

y(x) = Ce3x − −9

3
, C ∈ R

soit, après simplification :

y(x) = Ce3x + 3, C ∈ R.

On vérifie en calculant :

y′(x)− 3y(x) = 3Ce3x − 3
(
Ce3x + 3

)
= 3Ce3x − 3Ce3x − 9

= −9.

On a bien y′ − 3y = −9, soit y′ = 3y − 9.

2. On pose (E) : y′ = 2y − x3.

(a) y1(x) =
1

2
x3 +

3

4
x2 +

3

4
x+

3

8
.

Donc, y′1(x) =
3

2
x2 +

3

2
x+

3

4
.

On a alors :

y′1(x)− 2y1(x)

=
3

2
x2 +

3

2
x+

3

4
− 2

(
1

2
x3 +

3

4
x2 +

3

4
x+

3

8

)
= −x3.

Ainsi, y′1(x) = 2y1(x)− x3. La fonction y1 est donc
une solution de (E).

(b) De la solution particulière y1(x), on déduit que l’en-
semble des solutions de (E) sont les fonctions :

y(x) = y1(x) + y0(x)

où y0(x) sont les solutions de l’équation homogène
associée à (E), donc de la forme :

y0(x) = Ce2x, C ∈ R.

Ainsi, les solutions de (E) sont :

y(x) =
1

2
x3 +

3

4
x2 +

3

4
x+

3

8
+ Ce2x, C ∈ R.

■Exercice n◦3
On souhaite résoudre l’équation différentielle sui-
vante :

y′ − 2y = 7 sinx. (E)

1. D’après le cours, (E0) a pour solutions : y0(x) = Ce2x,
où C ∈ R.

2. (a) f(x) = a cosx+ b sinx ⇒ f ′(x) = −a sinx+ b cosx.

f solution de (E)
⇐⇒ f ′(x)− 2f(x) = 7 sinx

⇐⇒ −a sinx+ b cosx− 2(a cosx+ b sinx) = 7 sinx

⇐⇒ (−2a+ b) cosx+ (−a− 2b− 7) sinx = 0

⇐⇒

{
−2a+ b = 0

−a− 2b = 7

⇐⇒

{
b = 2a

−a− 2(2a) = 7

⇐⇒


b = 2a

a = −7

5

⇐⇒


b = −14

5

a = −7

5

Ainsi,
f(x) = −14

5
cosx− 7

5
sinx

est une solution particulière de (E).
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(b) On déduit de ce qui précède que l’ensemble des so-
lutions de (E) est l’ensemble des fonctions :

y(x) = −14

5
cosx− 7

5
sinx+ Ce2x, C ∈ R.

■Exercice n◦4
On souhaite résoudre l’équation différentielle sui-
vante :

y′ + 5y = 12 cosx. (E)

1. D’après le cours, (E0) a pour solutions : y0(x) = Ce−5x,
où C ∈ R.

2. (a) f(x) = a cosx+ b sinx ⇒ f ′(x) = −a sinx+ b cosx.

f solution de (E)
⇐⇒ f ′(x) + 5f(x) = 12 cosx

⇐⇒ −a sinx+ b cosx+ 5(a cosx+ b sinx) = 12 cosx

⇐⇒ (5a+ b− 12) cosx+ (−a+ 5b) sinx = 0

⇐⇒

{
5a+ b = 12

a = 5b

⇐⇒

{
26b = 12

a = 5b

⇐⇒

b = 6
13

a = 30
13

Ainsi,
f(x) = 30

13 cosx+ 6
13 sinx.

est une solution particulière de (E).
(b) On déduit de ce qui précède que l’ensemble des so-

lutions de (E) est l’ensemble des fonctions :

y(x) = 30
13 cosx+ 6

13 sinx+ Ce−5x, C ∈ R.

■Exercice n◦5
Voici une primitive de chacune des fonctions f .

1. F (x) = 5x.

2. F (x) = 3× 1

2
x2 + 2x =

3

2
x2 + 2x.

3. F (x) = −8× 1

2
x2 − 3x = −4x2 − 3x.

4. F (x) = x3 − 5

2
x2 + 2x.

5. F (x) = −1

3
× 1

6
x6+8× 1

4
x4− 7

2
x2+x = − 1

18
x6+2x4−

7

2
x2 + x.

6. F (x) = ex.

7. F (x) =
1

2
e2x.

8. F (x) = ln
(
x2 + x + 1

)
car si u(x) = x2 + x + 1, alors

f(x) =
u′(x)

u(x)
.

9. f(x) = −5

2
× 2x

x2 + 1
= −5

2

u′

u
avec u(x) = x2 + 1 donc

F (x) = −5

2
ln
(
x2 + 1

)
.

10. f(x) = −3×
(
− 1

x2

)
donc F (x) = −3× 1

x
= − 3

x
.

■Exercice n◦6
Voici les intégrales calculées.

1. Cherchons avant tout une primitive de

f(x) =
ex + 1

ex + x+ 1
.

Si on pose u(x) = ex + x + 1, alors u′(x) = ex + 1 donc

f =
u′

u
.

Par conséquent, une primitive de f est F = ln(u), soit :

F (x) = ln
(
ex + x+ 1

)
.

Ainsi, ∫ 1

0

ex + 1

ex + x+ 1
dx = F (1)− F (0)

= ln(e+ 2)− ln(2)∫ 1

0

ex + 1

ex + x+ 1
dx = ln

(
e+ 2

2

)
.

2. Une primitive de eax+b est :

f(x) = eax+b =⇒ F (x) =
1

a
eax+b.

Ainsi, une primitive de f(x) = e2x+1 est F (x) =
1

2
e2x+1

et donc : ∫ 1

0

e2x+1 dx = F (1)− F (0)

=
1

2
e3 − 1

2
e∫ 1

0

e2x+1 dx =
1

2
e
(
e2 − 1

)
.

3.
∫ 5

3

(
ex + x− 3

)
dx = F (5)− F (3),

avec F (x) = ex +
1

2
x2 − 3x

=

(
e5 +

25

2
− 15

)
−
(
e3 +

9

2
− 9

)
∫ 5

3

(
ex + x− 3

)
dx = e5 − e3 + 2.

4.
∫ 1

−1

(
3x3 − 2x

)
dx = F (1)− F (−1), avec F (x) =

3

4
x4 − x2

=
3

4
− 1−

(
3

4
− 1

)
∫ 1

−1

(
3x3 − 2x

)
dx = 0.

remarque :
Il n’est pas incohérent de trouver une intégrale égale à
0. Cela signifie que sur l’intervalle considéré, la courbe
représentative de la fonction est tantôt positive, tantôt
négative, et que l’aire des parties sous l’axe des abscisses
est égale à celle des parties au-dessus :



1

1

même aire

même aire

■Exercice n◦7

1. F (x) = x lnx− x.
FFF est une primitive de fff si F ′ = fF ′ = fF ′ = f .

F ′(x) = 1 × lnx + x × 1

x
− 1 = lnx + 1 − 1 =

lnx = f(x).
Ainsi, F est bien une primitive de f .

2.
∫ e

1

lnx dx = F (e)− F (1)

= (e ln e− e)− (1 ln 1− 1)

= (e× 1− e)− (1× 0− 1)

= 0− (−1)∫ e

1

lnx dx = 1.

■Exercice n◦8
Soit f une fonction définie par :

f(x) =
1

x3 − 2x2 − 5x+ 6
.

1. Soit P (x) = x3 − 2x2 − 5x + 6. Alors, P (1) = 13 − 2 ×
12 − 5× 1 + 6 = 0.
Ainsi, α = 1 est une racine de P .

2. De la question précédente, on peut conclure que P (x) =
(x− 1)(x2 + bx+ c).
En développant, on a :

P (x) = x3 + bx2 + cx− x2 − bx− c

= x3 + (b− 1)x2 + (c− b)x− c.

Par identification, on a alors :
b− 1 = −2

c− b = −5

−c = 6

Soit b = −1 et c = −6. Ainsi, P (x) = (x−1)(x2−x−6).
Le discriminant du second facteur est ∆ = 25, d’où les
racines suivantes :

β =
1−

√
∆

2
= −2 et γ =

1 +
√
∆

2
= 3.

Les trois racines de P sont donc α = 1, β = −2 et γ = 3.
3. Déterminons les réels A, B et C tels que :

f(x) =
1

(x− 1)(x+ 2)(x− 3)
=

A

x− 1
+

B

x+ 2
+

C

x− 3
.

— (x − 1)f(x) =
1

(x+ 2)(x− 3)
= A +

B(x− 1)

x+ 2
+

C(x− 1)

x− 3
.

Si x = 1, cela nous donne : 1

−6
= A .

— (x+2)f(x) =
1

(x− 1)(x− 3)
=

A(x+ 2)

x− 1
+
C(x+ 2)

x− 3
.

Si x = −2, cela nous donne : 1

15
= B.

— (x − 3)f(x) =
1

(x− 1)(x+ 2)
=

A(x− 3)

x− 1
+

B(x− 3)

x+ 2
+ C.

Si x = 3, cela nous donne : 1

10
= C.

Ainsi :

f(x) =
−1

6(x− 1)
+

1

15(x+ 2)
+

1

10(x− 3)
.

4.
∫ 5

4

f(x) dx

= −1

6

∫ 5

4

dx

x− 1
+

1

15

∫ 5

4

dx

x+ 2
+

1

10

∫ 5

4

dx

x− 3

= −1

6

[
ln(x− 1)

]5
4
+

1

15

[
ln(x+ 2)

]5
4
+

1

10

[
ln(x− 3)

]5
4

= −1

6
(ln 4− ln 3) +

1

15
(ln 7− ln 6) +

1

10
(ln 2− ln 1) .∫ 5

4

f(x) dx

=
1

6
ln 3− 1

3
ln 2 +

1

15
ln 7− 1

15
ln 2− 1

15
ln 3 +

1

10
ln 2

=
1

30
ln 3− 3

10
ln 2 +

1

15
ln 7

=
1

30
ln

(
147

512

)
.

■Exercice n◦9
Soit la fonction f définie sur R par :

f(x) =
e2x

1 + ex
.

1. On peut compter entre 138 et 140 petits carreaux dans
le domaine colorié.
Or, 1 petit carreau correspond à 0,1 × 0,1 = 0,01 unité
d’aire.
140 × 0,01 = 1,4 donc on peut écrire que∫ 1

−2

f(x) dx ≈ 1,4



-2 -1 0 1

1

2

2. ex − ex

1 + ex
=

ex
(
1 + ex

)
1 + ex

− ex

1 + ex

=
ex + e2x − ex

1 + ex

=
e2x

1 + ex

= f(x).

3.
∫ 1

−2

f(x) dx = F (1)− F (−2), avec F (x) = ex − ln
(
1 + ex

)
= e1 − ln

(
1 + e1

)
−
[
e−2 − ln

(
1 + e−2

)]
= e− ln(1 + e)− e−2 + ln

(
1 + e−2

)∫ 1

−2

f(x) dx = e− e−2 + ln

(
1 + e−2

1 + e

)
.

à la calculatrice, on trouve
∫ 1

−2
f(x) dx ≈ 1,3966.

■Exercice n◦10
Soit la fonction f définie sur R par :

f(x) =
1

x(x+ 1)
.

Sa courbe représentative sur [0; 10] est donnée ci-
dessous :

0 1 2 3 4 5 6 7 8 9 10

1

1. Un petit rectangle de la grille représente 0,25 × 0,1 =
0,025 unité d’aire.
Nous pouvons compter un peu plus de 20 de ces rec-
tangles dans le domaine colorié, ce qui nous laisse à pen-
ser que celui-ci a une aire supérieure à 20 × 0,025 = 0,5
unité d’aire.

Ainsi,
∫ 10

1
f(x) dx ⩾ 0,5.

2. 1

x
− 1

1 + x
=

1 + x

x(x+ 1)
− x

x(1 + x)

=
1 + x− x

x(x+ 1)

= f(x).

3.
∫ 10

1

f(x) dx = F (10)− F (1), avec F (x) = lnx− ln(x+ 1)

= ln 10− ln 11− (ln 1− ln 2)

= ln 10− ln 11 + ln 2

≈ 0,5978.

■Exercice n◦11
On a représenté ci-dessous les courbes représentatives
des fonctions f et g définies par :

f(x) =
1

x
et g(x) = 0,5x2 − x+ 1.

00 1

1

2

2

3

3

4

a
1
4 α

Cf

Cg

1. α est la solution de l’équation f(x) = g(x).

f(x) = g(x) ⇐⇒ 1

x
= 0,5x2 − x+ 1

⇐⇒ 1 = 0,5x3 − x2 + x

⇐⇒ 0,5x3 − x2 + x− 1 = 0.

Posons :
h(x) = 0,5x3 − x2 + x− 1.

Alors,
h′(x) = 1,5x2 − 2x+ 1.

Le discriminant de h′(x) est :

∆ = 4− 6 = −2 < 0

donc h′(x) est toujours du signe de « 1,5 », soit toujours
positif.
Ainsi, h est strictement croissante sur R.
h est continue et croissante sur [1; 2] ; de plus, h(1) =
−0,5 < 0 et h(2) = 1 > 0 donc 0 ∈ [h(1);h(2)].
Par conséquent, d’après le corollaire du théorème des
valeurs intermédiaires, l’équation h(x) = 0 admet une
unique solution sur[1; 2]. C’est cette valeur que l’on note
α.
On trouve à la calculatrice α ≈ 1,54.



2. Sur [0,25;α], f(x) ⩾ g(x) donc l’aire à gauche correspond
à
∫ α

0,25

[
f(x)− g(x)

]
dx. Posons :

u(x) = f(x)−g(x) =
1

x
−
(
0,5x2−x+1

)
=

1

x
−0,5x2+x−1.

Une primitive de u(x) est :

U(x) = ln(x)−0,5×1

3
x3+

1

2
x2−x = ln(x)−1

6
x3+

1

2
x2−x.

Alors, ∫ α

0,25

[
f(x)− g(x)

]
dx = U(α)− U(0,25)

≈ −0,53− (−1,6)

≈ 1,07.

Sur [α; a], g(x) ⩾ f(x) donc l’aire à droite correspond à∫ a

α

[
g(x)− f(x)

]
dx.

Une primitive de g(x)− f(x) est −U(x) (U(x) ayant été
calculée précédemment) donc :∫ a

α

[
g(x)− f(x)

]
dx = −U(a)−

(
− U(α)

)
= − ln(a) +

1

6
a3 − 1

2
a2 + a− 0,53

On cherche à déterminer a telle que
∫ α

0,25

[
g(x) −

f(x)
]
dx =

∫ a

α

[
g(x)− f(x)

]
dx,c’est-à-dire telle que :∫ α

0,25

[
g(x)− f(x)

]
dx =

∫ a

α

[
g(x)− f(x)

]
dx

⇐⇒ − ln(a) +
1

6
a3 − 1

2
a2 + a− 0,53 = 1,07

⇐⇒ − ln(a) +
1

6
a3 − 1

2
a2 + a− 1,6 = 0.

Bien sûr, il est hors de question de résoudre cette équa-
tion algébriquement. On prend donc la calculatrice et
on lui demande d’afficher les valeurs (par pas de 0,01) de
la fonction x 7−→ − ln(x) +

1

6
x3 − 1

2
x2 + x− 1,6 à partir

de x = 2 (par exemple) car on peut imaginer que a > 2
d’après la représentation graphique.
On trouve alors que a ≈ 2,85.

■Exercice n◦12
L’objectif de cet exercice est de déterminer une ap-
proximation de l’aire du domaine D défini par :

D =
{
0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ f(x)

}
où

∀x ∈ R, f(x) =
(
ln(1 + x)

)2
.

On note C la courbe représentative de f dans un repère
orthonormé (O;

−→
i ;

−→
j ) avec pour unité graphique :

‖−→i ‖ = ‖−→j ‖ = 10 cm.

A : étude des variations de la fonction
1. f est de la forme u2, avec u(x) = ln(x+ 1).

Donc f ′ = 2u′u, avec u′(x) =
1

x+ 1
.

D’où :
f ′(x) =

2 ln(x+ 1)

x+ 1
.

2. Si x ⩾ 0, alors x+ 1 ⩾ 1 et donc ln(x+ 1) ⩾ 0.
Ainsi, f ′(x) est strictement positive donc f est stricte-
ment croissante sur [0;+∞[.

3. f(0) = (ln(0 + 1))
2
= 0 et f(1) = (ln(1 + 1))

2
= ln 2. On

a le tableau de variations suivant :
x

f

0 1

00
ln 2ln 2

4. f ′(0) =
2 ln(0 + 1)

0 + 1
= 0 donc la tangente à C en 0 est

horizontale. Or, f(0) = 0 donc T est l’axe des abscisses.
5.

O 1

0,5 C

B : Calcul de l’approximation de l’aire
1.

O 1

0,5 C

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

2. L’aire du rectangle Rk est :

Ak =
1

10
× f

(
k

10

)
,

où 1

10
représente la mesure de la largeur et f

(
k

10

)
sa

longueur.
La somme des aires des rectangles est :

A =

9∑
k=0

1

10
× f

(
k

10

)
=

1

10
(f(0) + f(1) + · · ·+ f(9))

= A ≈ 0,165 u.a.
≈ 0,165× 100 cm2

A ≈ 16,487 cm2.



3.
∫ 1

0

f(x) dx = F (1)− F (0)

= 2(ln 2)2 − 4 ln 2 + 4

≈ 0,188.

L’aire de D est donc égale à 2(ln 2)2− 4 ln 2+4 u.a., soit
environ 0,188 u.a.

■Exercice n◦13
Un bouchon de pêche est obtenu à partir d’une courbe
que l’on a fait tourner autour de l’axe des abscisses.

−1 π
2

0

L’équation de la courbe est : f(x) =
√
1− x2 , x ∈ [−1; 0]

f(x) = cos(x) , x
[
0; π

2

]
D’après l’aide donnée dans l’énoncé,

V = π

∫ π
2

−1

(f(x))
2
dx

= π

∫ 0

−1

(f(x))
2
dx︸ ︷︷ ︸

volume de la demie-sphère de rayon 1

+π

∫ π
2

0

(f(x))
2
dx

=
2π

3
+ π

∫ π
2

0

cos2 x dx

=
2π

3
+ π

∫ π
2

0

(
1

2
cos 2x+

1

2

)
dx

=
2π

3
+

π

2

[
1

2
sin 2x+ x

]π
2

0

=
2π

3
+

π2

4

■Exercice n◦14
On considère l’intégrale :

I =

∫ 4

0

√
4x− x2 dx.

Considérons la fonction f(x) =
√
4x− x2 définie sur [0; 4].

Sa représentation graphique est un demi-cercle de centre
A(2; 0) situé au-dessus de l’axe des abscisses.

En effet, on a :

y =
√
4x− x2, y ⩾ 0

y2 = 4x− x2, y ⩾ 0

0 = x2 − 4x+ y2, y ⩾ 0

0 = (x− 2)2 − 4 + y2, y ⩾ 0

4 = (x− 2)2 + y2, y ⩾ 0

Cette dernière équation cartésienne est celle du demi-cercle
de centre A(2; 0) et de rayon r = 2.

Ainsi, I représente l’aire de ce demi-cercle. Donc I =
πr2

2
soit

I = 2π.

■Exercice n◦15
Intégration par parties.

1. I =
∫ 2

1
x
√
x dx. Posons :

u(x) =
√
x

v′(x) = x

u′(x) =
1

2
√
x

v(x) =
1

2
x2.

Alors,

I = [(uv)(x)]21 −
∫ 2

1

u′(x)v(x) dx

=

[
1

2
x2

√
x

]2
1

−
∫ 2

1

1

4

x2

√
x

dx

=

(
1

2
(2)2

√
2− 1

2
(1)2

√
1

)
− 1

4

∫ 2

1

x
√
x dx

I2
√
2− 1

2
− 1

4
I

5

4
I = 2

√
2− 1

2

I =
4

5

(
2
√
2− 1

2

)
I =

8
√
2− 2

5
.

2. J =
∫ 1

0
xex dx. Posons :

u(x) = x

v′(x) = ex
u′(x) = 1

v(x) = ex.

Alors,

J = [(uv)(x)]21 −
∫ 2

1

u′(x)v(x) dx

=
[
xex

]1
0
−
∫ 1

0

ex dx

= e−
[
ex
]1
0

= e− (e− 1)

J = 1.

3. K =
∫ e

1
x ln(x) dx. Posons :



u(x) = ln(x)

v′(x) = x

u′(x) =
1

x

v(x) =
1

2
x2.

Alors,

K = [(uv)(x)]21 −
∫ 2

1

u′(x)v(x) dx

=

[
1

2
x2 ln(x)

]e
1

− 1

2

∫
x dx

=
1

2
e2 − 1

2

[
1

2
x2

]e
1

=
1

2
e2 − 1

4
(e2 − 1)

K =
e2 + 1

4
.

4. L =
∫ e

1
x
(
lnx

)2
dx. Posons :

u(x) =
(
lnx

)2
v′(x) = x

u′(x) = 2× ln(x)× 1

x

v(x) =
1

2
x2.

Alors,

L = [(uv)(x)]21 −
∫ 2

1

u′(x)v(x) dx

=

[
1

2
x2 ln2(x)

]e
1

−
∫

x ln(x)dx︸ ︷︷ ︸
=K

=
1

2
e2 − e2 + 1

4

L =
e2 − 1

4
.

■Exercice n◦16
Intégration par parties.

S =
∫ π

4

0
sin(x)ex dx. Posons :

u(x) = sin(x)
v′(x) = ex

u′(x) = cos(x)
v(x) = ex.

Alors,

S =
[
sin(x)ex

]π
4

0
−
∫ π

4

0

cos(x)ex dx︸ ︷︷ ︸
=I

.

Calculons alors I en posant :

u(x) = cos(x)
v′(x) = ex

u′(x) = − sin(x)
v(x) = ex.

I =
[
cos(x)ex

]π
4

0
−
∫ π

4

0

− sin(x)ex dx

=
[
cos(x)ex

]π
4

0
+

∫ π
4

0

sin(x)ex dx

=
[
cos(x)ex

]π
4

0
+ S.

Ainsi,

S =
[
sin(x)ex

]π
4

0
−
([

cos(x)ex
]π

4

0
+ S

)
S =

[
sin(x)ex

]π
4

0
−
[
cos(x)ex

]π
4

0
− S

2S =
[
sin(x)ex − cos(x)ex

]π
4

0

S =
1

2

[(
sin(x)− cos(x)

)
ex
]π

4

0

S =
1

2

( (
sin

π

4
− cos

π

4

)
︸ ︷︷ ︸

=0

e
π
4 −

(
sin 0− cos 0)︸ ︷︷ ︸

=−1

e0
)

S =
1

2
.

■Exercice n◦17
On cherche à exprimer pour tout entier naturel n ⩾ 1
l’intégrale In définie par :

In =

∫ e

1

x
(
lnx

)n
dx.

Nous avons trouvé I1 et I2 dans l’exercice précédent.

1. Posons :

u(x) =
(
lnx

)n
v′(x) = x

u′(x) =
n
(
lnx

)n−1

x

v(x) =
1

2
x2.

Alors,

In =
[
(uv)(x)

]e
1
−
∫ e

1

u(x)v′(x) dx

=

[
1

2
x2

(
lnx

)n]e
1

− n

2

∫ e

1

x
(
lnx

)n−1
dx

In =
e2

2
− n

2
In−1.

2. Nous avions trouvé dans l’exercice précédent :

— I1 =
e2

4
+

1

4
;

— I2 =
e2

4
− 1

4
.

À l’aide de la relation de récurrence trouvée à la question
précédente, on déduit :

— I3 =
e2

2
− 3

2
× I2 =

e2

2
− 3

2
×

(
e2

4
− 1

4

)
=

e2

8
+

3

8
;

— I4 =
e2

2
− 4

2

(
e2

8
+

3

8

)
=

e2

4
− 3

4
;

— I5 =
e2

2
− 5

2

(
e2

2
− 3

4

)
= −e2

8
+

15

8
.

3. De la relation de récurrence In =
e2

2
− n

2
In−1 et de la

supposition que In = ane
2 + bn, nous pouvons déduire :

In+1 =
e2

2
− n+ 1

2
In

=
e2

2
− n+ 1

2
(ane

2 + bn)

=
e2

2
− (n+ 1)an

2
e2 − n+ 1

2
bn

=
1− (n+ 1)an

2
e2 − n+ 1

2
bn.



Or,
In+1 = an+1e

2 + bn+1.

Ainsi, par identification, on a :

an+1 =
1− (n+ 1)an

2
et bn+1 = −n+ 1

2
bn

4. b1 =
1

4
et (−1)1+1 1!

21+1
=

1

4
donc la propriété à démon-

trer est vraie pour n = 1.
Supposons qu’elle le soit pour un entier k ⩾ 1 fixé, c’est-
à-dire que :

bk = (−1)k+1 k!

2k+1
. (HR)

Alors,

bk+1 = −1

2
(k + 1)bk+1 d’après la relation de récurrence sur (bn)

= −1

2
(k + 1)× (−1)k+1 k!

2k+1

= (−1)k+2 k!× (k + 1)

2× 2k+1

= (−1)k+2 (k + 1)!

2k+2
.

La propriété est donc héréditaire.

Ainsi, la propriété est vraie pour tout entier n ⩾ 1.
5. Cette question est très difficile. Il est donc normal d’avoir

des difficultés à écrire un tel programme. J’ai décidé
d’utiliser les formules explicites de an et bn pour trou-
ver la valeur exacte de In, pour un entier n ⩾ 1 donné.
Cela donne par exemple :

■Exercice n◦18
1. En intégrant deux fois par parties, calculer K =∫ π

2

0

x2 cos 2x dx.

2. On note :

I =

∫ π
2

0

x2 cos2 x dx et J =

∫ π
2

0

x2 sin2 x dx.

(a) Calculer I + J .
(b) Calculer I − J .
(c) En déduire I et J .

1. Posons pour x ∈
[
0; π

2

]
:

u(x) = x2 et v(x) =
1

2
sin 2x.

Alors :
u′(x) = 2x et v′(x) = cos 2x.

Les fonctions u et v sont dérivables sur l’intervalle
[
0, π

2

]
et les fonctions u′ et v′ sont continues sur ce même in-
tervalle. Donc, par le théorème d’intégration par parties,
on a :

K =

∫ π
2

0

x2 cos 2x dx =

[
x2 1

2
sin 2x

]π
2

0︸ ︷︷ ︸
= 0

−
∫ π

2

0

x sin 2x dx.

Pour calculer l’intégrale
∫ π

2

0
x sin 2x dx, il est nécessaire

de procéder à une seconde intégration par parties. Po-
sons :

s(x) = x et t(x) =
1

2
cos 2x.

Alors :
s′(x) = 1 et t′(x) = − sin 2x.

Les fonctions s et t étant dérivables, à dérivée continue
sur l’intervalle

[
0,

π

2

]
, on a, par le théorème d’intégration

par parties :

K = −
∫ π

2

0

x sin 2x dx

=

[
x
1

2
cos 2x

]π
2

0

−
∫ π

2

0

1

2
cos 2x dx

= −π

4
− 1

4

[
sin 2x

]π
2

0

= −π

4
.

2. (a) Par linéarité de l’intégrale, on a :

I+J =

∫ π
2

0

x2
(
cos2 x+ sin2 x

)
dx =

∫ π
2

0

x2 dx =

[
1

3
x3

]π
2

0

=
π3

24
.

On sait que pour tout x,

cos 2x = cos2 x− sin2 x.

Donc, d’après 2a, par linéarité de l’intégrale, on a :

I−J =

∫ π
2

0

x2
(
cos2 x− sin2 x

)
dx =

∫ π
2

0

x2 cos 2x dx = −π

4
.

(b) On en déduit que :

I =
π3

48
− π

8
et J =

π3

48
+

π

8
.

■Exercice n◦19
Une machine-outil achetée neuve 10 000 e admet un
prix de revente modélisé par la fonction f définie par :

f(x) = 10e−0,2x

où f(x) est exprimé en millier d’euros et x en années.

Déterminer le prix de revente moyen de cette machine sur 8
ans depuis sa date d’achat.
Le prix de revente moyen est donné par la valeur moyenne de
f sur [0; 8] :

µ =
1

8− 0

∫ 8

0

f(x) dx

=
1

8

∫ 8

0

10e−0,2x dx

=
1

8

[
F (8)− F (0)

]
,

avec F (x) = 10×
(

1

−0,2

)
e−0,2x = −50e−0,2x

=
1

8

[
− 50 e−0,2×8 −

(
− 50 e−0,2×0

)]
= −50

8
e−1,6 +

50

8
≈ 4,988.



On peut donc estimer à 4 988 e le prix moyen de revente de
cette machine-outil sur 8 ans.

■Exercice n◦20
En prenant comme année de référence l’an 2000, le
nombre d’habitants en fin d’année 2000+x d’une ville
nouvelle est approchée par la fonction :

f(x) = 18e0,034x

où f(x) est exprimé en millier d’habitants.

La population moyenne de la ville entre 2050 et 2080 est la
valeur moyenne de f sur [50; 80] :

µ =
1

80− 50

∫ 80

50

10e0,034x dx

=
1

30

[
F (80)− F (50)

]
,

avec F (x) = 10× 1

0,034
e0,034x =

5000

17
e0,034x

=
1

30
× 5 000

17

[
e0,034×80 − e0,034×50

]
≈ 95,161.

On peut donc estimer à 95 161 le nombre moyen d’habitants
de cette ville entre 2050 et 2080.


