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I. Limites

Définition
La limite d’une fonction f en ´8 (resp. `8) est la valeur (si elle existe)
vers laquelle se rapproche f pxq quand x tend vers ´8 (resp. `8).
On la note lim

xÑ´8
f pxq (resp. lim

xÑ`8
f pxq).

Cette limite, quand elle existe, peut être un nombre réel ou un infini.

Exemples
1 lim

xÑ´8

1
x

“ 0 car plus x se rapproche de ´8, plus
1
x

se rapproche de 0.

2 lim
xÑ`8

x2 “ `8 car plus x devient grand, plus son carré le devient
aussi.

3 lim
xÑ´8

1
x3 “ 0 car plus x se rapproche de ´8, plus

1
x3 se rapproche de

0.
4 lim

xÑ`8

?
x “ `8 car plus x devient grand, plus sa racine carrée le

devient aussi.
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Asymptote horizontale

Définition
Soit a un réel. Si lim

xÑ´8
f pxq “ a (resp. lim

xÑ`8
f pxq “ a) alors la courbe

représentative C de f se rapproche de la droite d’équation y “ a en ´8

(resp. `8).
Dans ce cas, on dit que la droite d’équation y “ a est une asymptote
horizontale de C.

C

O

D

Ici, D est une asymptote horizontale de C en ´8 et en `8.
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Définition
Soit a un réel fini. La limite d’une fonction f en a est la valeur vers
laquelle f pxq se rapproche quand x se rapproche de a. On la note lim

xÑa
f pxq.

Remarque
Il se peut que, lorsque x se rapproche de a tout en lui étant inférieur, la
limite soit différente du cas où x se rapproche de a en lui étant supérieur.
On écrit alors :

limxÑa
xăa

f pxq ‰ limxÑa
xąa

f pxq.

Exemples
lim
xÑ0
xă0

1
x

“ ´8 et lim
xÑ0
xą0

1
x

“ `8.
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Asymptote verticale

Définition
Soit a un réel. Si lim

xÑa
f pxq “ `8 (resp. ´8) alors la courbe représentative

C de f se rapproche de la droite d’équation x “ a.
Dans ce cas, on dit que la droite d’équation x “ a est une asymptote
verticale de C.

C

O

D : x “ a

Ici, D est une asymptote verticale de C en a.
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Propriétés
Soit n un entier naturel non nul.

‚ lim
xÑ`8

?
x “ lim

xÑ`8
xn “ `8.

‚ lim
xÑ´8

ex “ 0.

‚ lim
xÑ`8

ex “ `8.

‚ lim
xÑ0
xą0

1
?

x
“ lim

xÑ0
xą0

1
xn “ `8.

‚ lim
xÑ´8

xn “

"

`8 pour n pair
´8 pour n impair .

‚ lim
xÑ0
xă0

1
xn “

#

`8 pour n pair
´8 pour n impair

.

Exemples
‚ lim

xÑ´8
x2 “ `8 et lim

xÑ´8
x3 “ ´8.

‚ lim
xÑ0
xą0

1
x3 “ `8 et lim

xÑ0
xă0

1
x5 “ ´8.
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Propriétés
On note ℓ la limite de la fonction f et ℓ1 la limite de la fonction g.
Limite d’une somme

lim f lim g limpf ` gq

ℓ ℓ1 ℓ ` ℓ1

ℓ 8 8

`8 `8 `8

´8 ´8 ´8

`8 ´8 F.I.

Limite d’un produit

lim f lim g lim fg
ℓ ℓ1 ℓℓ1

ℓ‰0 8 8

8 8 8

0 8 F.I.

Limite d’un quotient

lim f lim g lim f
g

ℓ ℓ1 ‰0 ℓ{ℓ1

ℓ‰0 0 8

ℓ 8 0
0 0 F.I.
8 8 F.I.
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Exemples
‚ On considère la fonction f définie par f pxq “ 3x2 ` ex .

On sait que : lim
xÑ´8

x2 “ `8 et lim
xÑ´8

ex “ 0.

Ainsi, par somme de limites lim
xÑ´8

f pxq “ `8.

‚ On considère la fonction g définie par gpxq “ ´xex .
On sait que : lim

xÑ`8
p´xq “ ´8 et lim

xÑ`8
ex “ `8.

Ainsi, par produit de limites lim
xÑ`8

gpxq “ ´8.
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Théorème de comparaison
On considère deux fonctions f et g. Soit a une valeur ou une borne (finie
ou infinie) de Df X Dg.

‚ Si lim
xÑ`a

f pxq “ `8 et s’il existe un réel A tel que, pour x ě A,

f pxq ď gpxq, alors lim
xÑa

gpxq “ `8.

‚ Si lim
xÑ`a

f pxq “ ´8 et s’il existe un réel A tel que, pour x ě A,

f pxq ě gpxq, alors lim
xÑa

gpxq “ ´8.

Exemples
Soit f la fonction définie sur R par f pxq “ x ` 2 cospxq.
Pour tout x P R,

´1 ď cospxq ď 1 ô ´2 ď 2cospxq ď 2
ô ´2 ` x ď x ` 2cospxq ď x ` 2.

Ainsi, @x P R, f pxq ď x ` 2. Or, lim
xÑ´8

px ` 2q “ ´8. Donc, selon le

théorème de comparaison, lim
xÑ´8

f pxq “ ´8.
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Théorème des gendarmes
Soit f , g et h trois fonctions définies sur un intervalle I telles que pour tout
x P I , f pxq ď gpxq ď hpxq. Si, pour tout réel ℓ, on a
lim
xÑa

f pxq “ lim
xÑ`a

hpxq “ ℓ, alors lim
xÑa

gpxq “ ℓ.

Exemples
Soit f la fonction définie sur R˚

` par f pxq “
sinpxq

x
.

On sait que, pour tout x P R˚
`, ´1 ď sinpxq ď 1. Donc, pour tout x P R˚

`,

´
1
x

ď sinpxq ď
1
x

.

De plus lim
xÑ`8

´
1
x

“ lim
xÑ`8

1
x

“ 0, ainsi selon le théorème des gendarmes

lim
xÑ`8

f pxq “ 0.
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Propriété
Soient u et v deux fonctions. On définit la fonction f par f pxq “ u

“

vpxq
‰

.
Alors,

lim
xÑα

f pxq “ lim
XÑy

upXq où y “ lim
xÑα

vpxq,

α pouvant représenter un nombre fini ou un infini.

Remarque
On peut aussi noter :

f pxq “ u
“

vpxq
‰

“ pu ˝ vqpxq

(lire « u rond v »). On dit que f est une fonction composée.

Exemples
Soit f pxq “

?
x2 ` 1.

On a :
lim

xÑ´8

`

x2 ` 1
˘

“ `8

lim
XÝÑ`8

?
X “ `8

,

/

.

/

-

ainsi, par composition de limites, on

obtient : lim
xÑ´8

f pxq “ `8.
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II. Continuité
Définition
Soit une fonction f définie sur un intervalle I et a P I .
On dit que f est continue en a si : limxÑa f pxq “ f paq.
On dit que f est continue sur I si f est continue en tout point de I .

Exemples
La courbe représentative de la fonction inverse n’est pas continue sur R
(car ses limites en 0 sont infinies). En revanche, elle l’est sur s ´ 8 ; 0r et
sur s0 ;`8r.

I “ R

1
x

O

Il y a un « trou » au niveau de
x “ 0 donc la fonction n’est pas
continue en 0, donc pas continue

sur R.

I1 “ ´ 8; 0r I2 “s0; `8r

1
x

O

Il n’y a pas de trou sur chaque
intervalle I1 et I2 donc la fonction

est continue sur I1 et sur I2.
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Propriétés
‚ Les fonctions polynômes sont continues sur R.
‚ Les fonctions rationnelles sont continues sur tout intervalle inclus dans

leur ensemble de définition.
‚ La fonction racine carrée est continue sur r0 ;`8r.
‚ La fonction exponentielle est continue sur R.
‚ Les fonctions x ÞÑ cos x et x ÞÑ sin x sont continues sur R.
‚ Les fonctions obtenues par somme, produit ou quotient de fonctions

continues sont continues sur chacun des intervalles où elles sont
définies.

Exemples
1 La fonction x ÞÑ x3 ` 2x ´ 5 est continue sur R comme fonction

polynôme.
2 La fonction x ÞÑ sinpxq ` cospxq est continue sur R comme somme de

deux fonctions continues sur R.
3 La fonction x ÞÑ px2 ` 1q cospxq est continue sur R comme produit de

deux fonctions continues sur R.

4 La fonction x ÞÑ
x2 ` 1
x ´ 1

est continue sur s ´ 8 ; 1r et sur s1 ; `8r

comme fonction rationnelle définie sur ces deux intervalles.
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Propriétés
Soit f “ v ˝ u une fonction définie sur un intervalle I de R.
Si u est continue sur I et si v est continue sur upI q alors f est continue sur
I .

Exemples
Soient u : x ÞÑ x ´ 1 et v : x ÞÑ

?
x. Notons f pxq “ pv ˝ uqpxq “

?
x ´ 1.

u est continue sur R mais f n’est pas définie sur R car x ´ 1 ă 0 pour
x ă 1. Ainsi, f est définie sur I “ r1 ; `8r, et elle est continue sur I car u
est continue sur I et v est continue sur upI q “ r0 ; `8r.
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Théorème des valeurs intermédiaires
Soit f une fonction définie et continue sur un intervalle I , et soient a et b
deux réels de I . Pour tout réel k compris entre f paq et f pbq, l’équation
f pxq “ k admet au moins une solution comprise entre a et b.

Théorème des bijection
Soit f une fonction définie sur un intervalle I , et soient a et b deux réels de
I tels que a ă b.
Si f est continue et strictement monotone sur ra ; bs, alors pour tout réel k
compris entre f paq et f pbq, l’équation f pxq “ k admet une solution unique
dans l’intervalle ra ; bs.

Exemples
‚ Soit f pxq “ cos x ´ x. Alors, f 1pxq “ ´ sin x ´ 1 ď sur R donc f est

strictement décroissante. f est aussi continue sur R comme la somme
de deux fonctions continues sur R.
De plus,

‚ f p0q “ cos 0 ´ 0 “ 1 ą 0
‚ f pπq “ cosπ ´ π “ ´1 ´ π ă 0

donc 0 Psf pπq ; f p0qr. Ainsi, d’après le théorème de bijection,

l’équation f pxq “ 0 admet une unique solution sur r0 ; πs.
‚ L’équation x3 “ 243 admet une unique solution sur R car la fonction

cube x ÞÝÑ x3 est strictement croissante et continue sur R et 243 est
compris entre lim

xÑ´8
x3 “ ´8 et lim

xÑ`8
x3 “ `8.
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Théorème du point fixe
Soit une suite punq définie par un premier terme et un`1 “ f punq

convergente vers ℓ.
Si la fonction associée f est continue en ℓ, alors la limite de la suite ℓ est
solution de l’équation f pxq “ x.

Démonstration
La suite punq est convergente vers ℓ. Donc, lim

nÑ`8
un “ ℓ.

De plus, la fonction f est continue en ℓ. Donc, lim
xÑℓ

f pxq “ f pℓq.
Par composition, on en déduit que : lim

nÑ`8
un`1 “ lim

nÑ`8
f punq “ f pℓ).

Or, lim
nÑ`8

un`1 “ lim
nÑ`8

un “ ℓ. Donc, f pℓq “ ℓ.
D’où le résultat.
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