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it I. Limites

Continuité d’une

fon n

Définition

La limite d’une fonction f en —o0 (resp. +00) est la valeur (si elle existe)
vers laquelle se rapproche f(z) quand z tend vers —oo (resp. +00).

On la note Zli)moof(x) (resp. zEIfoof(x))

Cette limite, quand elle existe, peut étre un nombre réel ou un infini.

Limite aux infinis

Exemples

1 1
) limOO — = 0 car plus z se rapproche de —o0, plus — se rapproche de 0.
T—>—00 T z

® lim 22 = 400 car plus z devient grand, plus son carré le devient
z—+00
aussi.

1 1
® lim — = 0 car plus z se rapproche de —o0, plus — se rapproche de
T—>—00 1:3 :1:3

0.

® lim +/z = +00 car plus z devient grand, plus sa racine carrée le
T——+00

devient aussi.




Lim 3 1 >
Continuité d’une A'bymptOte hOI‘lZOIltdle

fon n

Définition
Soit @ un réel. Si lim f(z) = a (resp. lirf f(z) = a) alors la courbe
T——00 T—>+00

représentative C de f se rapproche de la droite d’équation y = a en —o0
(resp. +0).

Dans ce cas, on dit que la droite d’équation y = a est une asymptote
horizontale de C.
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Ici, D est une asymptote horizontale de C en —o0 et en +o0.




fonction

Définition

Soit @ un réel fini. La limite d’une fonction f en a est la valeur vers

laquelle f(z) se rapproche quand z se rapproche de a. On la note lim f(z).
r—a

Limite en un point
fini

Remarque

Il se peut que, lorsque z se rapproche de a tout en lui étant inférieur, la
limite soit différente du cas ou z se rapproche de a en lui étant supérieur.
On écrit alors :

lim f(2) # lim f(a).

r<a r>a
Exemples
1 1
lim — = —o0 et lim — = +o0.
z—0 g z—0

<0 >0




Lim Asymptote verticale

Continuité d’une

fon n

Définition

Soit @ un réel. Si lim f(z) = +00 (resp. —o0) alors la courbe représentative
r—a

C de f se rapproche de la droite d’équation = = a.

Dans ce cas, on dit que la droite d’équation = = a est une asymptote

verticale de C.

Asymptote verticale

D:z=a
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Ici, D est une asymptote verticale de C en a.




fonction

Limite

fonct

Propriétés

Soit n un entier naturel non nul.

lim +z = lirll z" = 400.
St

T—+00 T
L] lim e* =0.
T—>—00
e lim e =+4o00.
T—+00
R 1 R 1
° 1111})7=11H})7=+CD.
xr— €T z—0
z>0 >0
. [e'e) our n pair
e lim z" = {+ p pair
T——00 —00  pour n Impair
o1 +00 pour n pair
e lim — = i X
z—0 g™ —00 pour n impair
z<0
Exemples
e lim 22=+4et lim z3=—o0.
T—>—00 T—>—00
o lim & = 4+ et lim X = —o0.
z—0 T z—0 T

>0 z<0



Propriétés
On note £ la limite de la fonction f et £’ la limite de la fonction g.
Limite d’une somme

limf | limg | im(f + g)
¢ A L+ 0
4 0 0
+00 +00 +00
—0 —0o0 —0o0
+00 —00 F.L

Limite d’un produit

limf | limg | limfg
¢ v 74
L#0 0 0
[5%) 0 0
0 e F.I.

Limite d’un quotient

limf | limg | lim g

¢ [ e+0 | o

£#0 0 0
4 0 0
0 0 F.I.
0 0 F.I.




fonction

Exemples

e On considere la fonction f définie par f(z) = 322 + €®.
On sait que : lim 22 = 40 et lim % = 0.
T—>—00 T—>—00
raiions o e Ainsi, par somme de limites limoof(a:) = +00.
T— —
e On considére la fonction g définie par g(z) = —ze®.
On sait que : lim (—z) = —0 et lim e* = +o0.
T— 400 x—>+00

Ainsi, par produit de limites lim g(z) = —c0.
T— 400




Limites &

Continu 1’une

fon
Théoréme de comparaison

On considére deux fonctions f et g. Soit a une valeur ou une borne (finie
ou infinie) de Dy n Dy.

e Si lirﬂ f(z) = 400 et 8’1l existe un réel A tel que, pour z = A,
r—> a

f(=) < g(x), alors lim g(z) = +o0.

o Si 1irr+1 f(z) = —o0 et 81l existe un réel A tel que, pour z = A,
r— a
f(z) = g(z), alors lim g(z) = —o0.
r—a
Exemples

Soit f la fonction définie sur R par f(z) = z + 2 cos(z).
Pour tout z € R,

—1<cos(z) <1 < —2<2cos(z) <2

< 24 z<z+2c08(z) <z+2

Ainsi, Vz € R, f(z) < z+ 2. Or, lim (z+ 2) = —o0. Donc, selon le
T— —00

théoréme de comparaison, lim f(z) = —o0.
T——00




Lim
Continuit
fon

d’une
n

Théoréme des gendarmes

Soit f, g et h trois fonctions définies sur un intervalle I telles que pour tout
z €I, f(z) < g(z) < h(z). Si, pour tout réel £, on a

lim f(z) = lim h(z) = ¢, alors lim g(z) = £.

T—a r—+a T—a

Exemples

Soit f la fonction définie sur R% par f(z) = sm(:n).

T
On sait que, pour tout = € Ri, —1 < sin(z) < 1. Dong, pour tout = € Ri‘,
1 R 1
—— <sin(z) < —.
T z 1
De plus lim —— = lim — =0, ainsi selon le théoréme des gendarmes

T—+00 xT T—>+00 T



Lim
Continuité d’une

fon n

Propriété

Soient u et v deux fonctions. On définit la fonction f par f(z) = u[v(z)]
Alors,

lim f(z) = lim u(X) ouy= lim v(z),
T X—y T

a pouvant représenter un nombre fini ou un infini.

Remarque

On peut aussi noter :
f(@) = u[v(z)] = (uov)(z)
(lire « w rond v »). On dit que f est une fonction composée.

Exemples
Soit f(z) = v22 + 1.
lim (2% 41) = 4o
r—>—00 . . sy . .
On a : ainsi, par composition de limites, on

lim \/Y=+OO

X—s+0
obtient : lim f(z) = +o0.
T——00




Lim II. Continuité

Continuité d’une

Définition

Soit une fonction f définie sur un intervalle I et a € I.

On dit que f est continue en a si : limg—, f(z) = f(a).

On dit que f est continue sur I si f est continue en tout point de I.

Exemples

La courbe représentative de la fonction inverse n’est pas continue sur R
(car ses limites en O sont infinies). En revanche, elle 'est sur | — o0 ;0] et
sur ]0 ; +o0[.

A
A
1
- 1
Continuité > -
O >
(0]

- . - —

I'=R I = — ;0] Iy =]0; +o0f

Il y a un « trou » au niveau de

z = 0 donc la fonction n’est pas

continue en 0, donc pas continue
sur R.

Il n’y a pas de trou sur chaque
intervalle I1 et I> donc la fonction
est continue sur I1 et sur I».




ol Propriétés

erminale Sp¢ e Les fonctions polynémes sont continues sur R.

e Les fonctions rationnelles sont continues sur tout intervalle inclus dans
leur ensemble de définition.

e La fonction racine carrée est continue sur [0 ; 4+00][.

e La fonction exponentielle est continue sur R.

e Les fonctions z — cosz et x — sin x sont continues sur R.

e Les fonctions obtenues par somme, produit ou quotient de fonctions

continues sont continues sur chacun des intervalles ou elles sont
définies.

Exemples

® La fonction z — z3 + 2z — 5 est continue sur R comme fonction
Fonctionslcontinusa polynéme.

de référence
® La fonction = — sin(z) + cos(z) est continue sur R comme somme de
deux fonctions continues sur R.

® La fonction z — (22 + 1) cos(z) est continue sur R comme produit de

deux fonctions continues sur R.
. 22 +1 .
® La fonction £ — ——— est continue sur | — oo ; 1[ et sur |1 ; +oo[

T —
comme fonction rationnelle définie sur ces deux intervalles.




fonction

Propriétés
Soit f = v o u une fonction définie sur un intervalle I de R.

Si u est continue sur I et si v est continue sur u(/) alors f est continue sur
I.

Exemples

Soient w : z+—>z—1etv : z+— /2. Notons f(z) = (vou)(z) =z — 1.
u est continue sur R mais f n’est pas définie sur R car z — 1 < 0 pour

z < 1. Ainsi, f est définie sur I = [1; +00[, et elle est continue sur I car u
est continue sur I et v est continue sur u(I) = [0 ; +oof.



Lim
Continuit

d’une

Théoreme des valeurs intermédiaires

Soit f une fonction définie et continue sur un intervalle I, et soient a et b
deux réels de I. Pour tout réel k compris entre f(a) et f(b), ’équation
f(z) = k admet au moins une solution comprise entre a et b.

Théoréme des bijection

Soit f une fonction définie sur un intervalle I, et soient a et b deux réels de
I tels que a < b.

Si f est continue et strictement monotone sur [a ; b], alors pour tout réel k
compris entre f(a) et f(b), 'équation f(z) = k admet une solution unique
dans l'intervalle [a ; b].

Exemples

e Soit f(z) = cosz — z. Alors, f/(z) = —sinz — 1 < sur R donc f est
strictement décroissante. f est aussi continue sur R comme la somme
de deux fonctions continues sur R.

De plus,
® f(0)=cos0—0=1>0
® f(r)=cosm—m=—-1—7<0

donc 0 €]f(7) ; f(0)[. Ainsi, d’aprés le théoréme de bijection,

léquation f(z) = 0 admet une unique solution sur [0 ; =].

o L’6quation z3 = 243 admet une unique solution sur R car la fonction
cube z —> 22 est strictement croissante et continue sur R et 243 est

compris entre lim 2% = —w et lim 23 = +o0.
T——00 x— 400



&me du point

Théoreéme du point fixe

Soit une suite (u,) définie par un premier terme et up4+1 = f(un)
convergente vers .

Si la fonction associée f est continue en ¢, alors la limite de la suite £ est
solution de 'équation f(z) = =.

Démonstration

La suite (un) est convergente vers £. Donc, lim wu, = /.
n— 00

De plus, la fonction f est continue en £. Donc, limef(z) = f(¥).
xTr—>
Par composition, on en déduit que : nll}}floo Upt1 = ngrfoof(u”) = f(0).

Or, nEI}—ch Upt1 = nETOO u, = £. Donc, f(£) = 4.

D’ou le résultat.
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