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Corrigés

Série d’exercices Classe : Tle Spé Maths Lycée : Evariste Galois

Logarithme népérien

■Exercice n◦1

1. ln 8 − ln 2 = ln

(
8

2

)
= ln 4 (que l’on peut aussi

mettre sous la forme 2 ln 2).
2. ln 6 + ln 3 = ln(6× 3) = ln 18.

3. ln 25− ln 30 + ln 10 = ln

(
25

30
× 10

)
= ln

25

3
.

4. ln 50 + ln 2− ln 10 = ln

(
50× 2

10

)
= ln 10.

5. 3 ln 4 − ln 256 = 3 ln
(
22
)
− ln

(
28
)

= 6 ln 2 −
8 ln 2 = −2 ln 2.

6. 2 ln 2 − ln 16 + ln 128 = 2 ln 2 − ln 24 + ln 27 =
2 ln 2− 4 ln 2 + 7 ln 2 = 5 ln 2.

7. ln e2x = 2x.
8. ln e2x−4 − ln e2x+4 = 2x− 4− (2x+ 4) = −8.

9. 3 ln ex+1

2 ln e1−x
=

3(x+ 1)

2(1− x)
=

3x+ 3

2− 2x
.

■Exercice n◦2
1. ln(3x− 4) = ln(2x+ 1).

— Domaine de définition :

Il faut que

{
3x− 4 > 0

2x+ 1 > 0
, soit


x >

4

3

x > −1

2

,

donc que x >
4

3
.

— Résolution :
ln(3x− 4) = ln(2x+ 1)
⇐⇒ 3x− 4 = 2x+ 1 ⇐⇒ x = 5.
5 >

4

3
donc l’ensemble solution est S = {5}.

2. ln(4− 2x) = ln(x− 1).
— Domaine de définition :

Il faut que

{
4− 2x > 0

x− 1 > 0
, soit

{
x < 2

x > 1
,

donc que 1 < x < 2.
— Résolution :

ln(4− 2x) = ln(x− 1)

⇐⇒ 4−2x = x−1 ⇐⇒ 5 = 3x ⇐⇒ x =
5

3
.

1 <
5

3
< 2 donc l’ensemble solution de l’équa-

tion est S =

{
5

3

}
.

3. ln(x2 + x+ 1) = ln(x2 − 2x+ 1).
— Domaine de définition :

Il faut que

{
x2 + x+ 1 > 0

x2 − 2x+ 1 > 0
.

Or, le discriminant de x2 + x + 1 est égal à
−3 donc ce polynôme est toujours strictement
positif. De plus, x2 − 2x + 1 = (x − 1)2 donc
seul x = 1 ne convient pas. Le domaine de
définition est donc D = R \ {1}.

— Résolution :
ln(x2 + x+ 1) = ln(x2 − 2x+ 1)

⇐⇒ x2 + x+ 1 = x2 − 2x+ 1

⇐⇒ 3x = 0

⇐⇒ x = 0.
0 ∈ D donc l’ensemble solution de l’équation est
mathcalS = {0}.

4. ln(2x2 − 10x+ 8) = ln(3x2 − 3x− 18).
— Domaine de définition :

Il faut que

{
2x2 − 10x+ 8 > 0

3x2 − 3x− 18 > 0
.

Le discriminant de 2x2−10x+8 est ∆1 = 100−64 =

36 et donc ses racines sont 10− 6

4
= 1 et 10 + 6

4
= 4.

Le polynôme est donc strictement positif sur
]−∞; 1[∪]4;+∞[.
Le discriminant de 3x2 − 3x − 18 est ∆2 =
9 + 216 = 225 et donc ses racines sont
3− 15

6
= −2 et 3 + 15

6
= 3.

Le polynôme est donc strictement positif sur
]−∞;−2[∪]3;+∞[.
Le domaine de définition est donc
D =]−∞;−2[∪]4;+∞[.

— Résolution :
ln(2x2 − 10x+ 8) = ln(3x2 − 3x− 18)

⇐⇒ 2x2 − 10x+ 8 = 3x2 − 3x− 18

⇐⇒ x2 + 7x− 26 = 0.

Le discriminant de x2+7x−26 est ∆ = 49+104 = 153
donc il admet deux racines :
−7−

√
153

2
∈ D et −7 +

√
153

2
/∈ D.

L’ensemble solution de l’équation est donc :

S =

{
−7−

√
153

2

}
.

5. (lnx)2 − 3 lnx+ 2 = 0. Posons X = lnx.
L’équation devient : X2 − 3X + 2 = 0 et admet pour
solutions X = 1 et X = 2.
Ainsi, lnx = 1 ou lnx = 2, soit x = e ou x = e2.
L’ensemble solution est donc S =

{
e ; e2

}
.

6. 2(lnx)2 − 5 lnx− 3 = 0. Posons X = lnx.
L’équation devient 2X2 − 5X − 3 = 0 et admet pour
solutions X = 3 et X = −1

2
.

Ainsi, lnx = 3 ou lnx = −1

2
.

Soit, x = e3 ou x = e−0,5 =
1√
e

.

L’ensemble solution est donc S =
{
e3 ; e−0,5

}
.

■Exercice n◦3
Résolution d’équations et d’inéquations.

1. — Pour résoudre l’équation ln(5x− 1) = 2, il faut avant
tout trouver son domaine de définition.
ln(5x−1) est défini pour tout réel x tel que 5x−1 > 0,
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soit x >
1

5
.

Ainsi, le domaine de définition de l’équation est]
1

5
;+∞

[
.

— ln(5x− 1) = 2 ⇐⇒ eln(5x−1) = e2

⇐⇒ 5x− 1 = e2

⇐⇒ 5x = e2 + 1

⇐⇒ x =
e2 + 1

5
.

— On vérifie que la valeur trouvée est bien dans le do-
maine de définition en en trouvant une valeur appro-
chée.

Par conséquent, S =

{
e2 + 1

5

}
.

2. e−x = 5 ⇐⇒ ln
(
e−x

)
= ln(5)

⇐⇒ −x = ln(5)

⇐⇒ x = − ln(5) = ln
1

5
Par conséquent, S = {− ln 5}.

3. — Pour résoudre l’inéquation ln(3x−1) < 0, il faut avant
tout trouver son domaine de définition.
ln(3x−1) est défini pour tout réel x tel que 3x−1 > 0,
soit x >

1

3
.

Ainsi, le domaine de définition de l’équation est]
1

3
;+∞

[
.

— ln(3x− 1) < 0 ⇐⇒ eln(3x−1) < e0

⇐⇒ 3x− 1 < 1

⇐⇒ 3x < 2

⇐⇒ x <
2

3

— On trouve l’intersection de l’intervalle ] − ∞;
2

3
[ et

du domaine de définition ]
1

3
;+∞[. Par conséquent,

S =

]
1

3
;
2

3

[
.

4. e5−x ⩽ 2 ⇐⇒ ln
(
e5−x

)
⩽ ln(2)

⇐⇒ 5− x ⩽ ln(2)

⇐⇒ −x ⩽ ln(2)− 5

⇐⇒ x ⩾ 5− ln(2)

Par conséquent, S = ]5− ln(2);+∞[ .

■Exercice n◦4
Résolutions d’inéquations.

1. ln(5x+ 20) > ln(3x− 9).
— Domaine de définition : il faut que{

5x+ 20 > 0

3x− 9 > 0
, soit x > 3.

Le domaine de définition est donc D =]3;+∞[.
— Résolution : ln(5x+ 20) > ln(3x− 9)

⇐⇒ 5x+ 20 > 3x− 9

⇐⇒ 2x > −29

⇐⇒ x > −29

2
.

Notons U =

]
−29

2
;+∞

[
; alors, l’ensemble solution

de l’inéquation est U ∩ D, soit S = ]3;+∞[.
— Domaine de définition : il faut que{

8− 2x > 0

5x− 25 > 0
, soit

{
x < 4

x > 5
, donc le domaine de

définition est vide.
Ainsi, S = ∅.

2. ln(x2 + 1) < ln(2x2 + x+ 2).
— Domaine de définition : il faut que{

x2 + 1 > 0

2x2 + x+ 2 > 0
, ce qui est toujours le cas car le

discriminant des polynômes x2 + 1 et 2x2 + x + 2
sont strictement négatifs.
Le domaine de définition est donc R.

— Résolution : ln(x2 + 1) < ln(2x2 + x+ 2)

⇐⇒ x2 + 1 < 2x2 + x+ 2

⇐⇒ x2 + x+ 1 > 0.

Le discriminant de x2+x+1 étant strictement négatif,
tout réel x convient.
L’ensemble solution de cette inéquation est donc S =
R.

3. ln(2x2 − 3x+ 1) > ln(−5x2 + 8x− 3).
— Domaine de définition : les racines de 2x2−3x+1

sont 1 et 1

2
;

ainsi, 2x2 − 3x+ 1 > 0 sur I =

]
−∞;

1

2

[
∪ ]1;+∞[.

Les racines de −5x2+8x−3 sont 1 et 3

5
donc −5x2+

8x− 3 > 0 sur J =

]
3

5
; 1

[
.

Le domaine de définition est donc I ∩ J = ∅.
— Résolution : le domaine de définition étant l’en-

semble vide, il ne peut y avoir de solutions à cette
inéquation. Donc S = ∅.

4. ln(x2 − 5x− 14) ⩾ ln(2x2 − 10x+ 8).
— Domaine de définition : le polynôme x2 − 5x− 14

admet pour racines −2 et 7 donc il est strictement
positif sur I = ]−∞;−2[ ∪ ]7;+∞[.
Le polynôme 2x2 − 10x + 8 admet pour racines 4 et
1 donc il est strictement positif sur J = ]−∞; 1[ ∪
]4;+∞[.

Le domaine de définition est donc I ∩ J , soit D =
]−∞;−2[ ∪ ]7;+∞[.

— Résolution : ln(x2 − 5x− 14) ⩾ ln(2x2 − 10x+ 8)

⇐⇒ x2 − 5x− 14 ⩾ 2x2 − 10x+ 8

⇐⇒ x2 − 5x+ 22 ⩽ 0.

Le discriminant de x2− 5x+22 est ∆ = 25− 108 < 0
donc le polynôme est toujours strictement positif.

L’ensemble solution de l’inéquation est donc S =
]−∞;−2[ ∪ ]7;+∞[ .

5. ln(x2 + x− 6) > ln(−2x2 + 14x+ 16).
— Domaine de définition : le polynôme x2 + x − 6

admet pour racines 2 et −3 donc il est strictement
positif sur I = ]−∞;−3[ ∪ ]2;+∞[.
Le polynôme −2x2+14x+16 admet pour racines −1
et 8 donc il est strictement positif sur J = ]−1; 8[.



Le domaine de définition est donc I∩J , soit D = ]2; 8[.
— Résolution : ln(x2 + x− 6) > ln(−2x2 + 14x+ 16)

⇐⇒ x2 + x− 6 > −2x2 + 14 + 16

⇐⇒ 3x2 − 13x− 22 > 0.

Le discriminant du polynôme 3x2− 13x− 22 est ∆ =
169 + 12 × 22 = 433 donc il admet deux racines :

x1 =
13−

√
433

6
/∈ D et x2 =

13 +
√
433

6
∈ D.

Ainsi, 3x2−13x−22 > 0 sur U =]−∞;x1[∪]x2; +∞[.

L’ensemble solution de l’inéquation est donc U ∩ D,

soit S =

]
13 +

√
433

6
; 8

[
.

■Exercice n◦5
On considère la fonction f définie par :

f(x) = lnx− x.

1. f ′(x) =
1

x
− 1.

Or, pour x ⩾ 1, 0 <
1

x
⩽ 1, et donc f ′(x) ⩽ 0.

La fonction f est donc décroissante sur [1;+∞[.
2. f(1) = −1, donc f(x) < 0 sur [1;+∞[. Donc lnx < x

sur cet intervalle.
De plus, on sait que pour x ⩾ 1, lnx ⩾ 0.
On en déduit alors que sur [1;+∞[, 0 ⩽ lnx < x.

3. Posons x =
√
u, u ⩾ 1.

Alors, de ce qui précède, on déduit que

0 ⩽ ln
√
u <

√
u.

Ainsi, en divisant par u, on obtient :

0 ⩽ ln
√
u

u
<

√
u

u
,

on encore :
0 ⩽

1
2 lnu

u
<

1√
u
.

Que l’on mette u ou x importe peu. Ainsi,

∀x ∈ [0;+∞[, 0 ⩽ lnx

2x
<

1√
x
.

4. lim
x→+∞

1√
x
= 0 donc d’après le théorème des gendarmes,

lim
x→+∞

lnx

2x
= 0.

Multiplier l’expression par 1

2
ne change pas la limite,

donc lim
x→+∞

lnx

x
= 0.

■Exercice n◦6
On considère la fonction f définie sur R∗ par :

f(x) =
x− 1

x2
ln
(
x2 + 1

)
.

1. Nous savons que lim
X→0

ln(X + 1)

X
= 1. Ainsi, en posant

X = x2, on a :

lim
x→0

ln
(
x2 + 1

)
x2

= 1.

De plus, lim
x→0

(x− 1) = −1, donc

lim
x→0

(
(x− 1)

ln
(
x2 + 1

)
x2

)
= −1.

Ainsi, lim
x→0

f(x) = −1.

2. Nous pouvons écrire, sur R∗ :

f(x) =
ln
(
x2 + 1

)
x

−
ln
(
x2 + 1

)
x2 + 1

× x2 + 1

x2

— lim
X→+∞

lnX

X
= 0, donc en posant X = x2 + 1, on

obtient :
lim

x→+∞

ln
(
x2 + 1

)
x2 + 1

= 0.

De plus,

lim
x→+∞

x2 + 1

x2
= lim

x→+∞

x2
(
1 + 1

x2

)
x2

= lim
x→+∞

(
1 +

1

x2

)
= 1.

Ainsi,

lim
x→+∞

(
ln
(
x2 + 1

)
x2 + 1

× x2 + 1

x2

)
= 0. (1)

— Par ailleurs,

ln
(
x2 + 1

)
= ln

[
x2

(
1 +

1

x2

)]
= 2 lnx+ ln

(
1 +

1

x2

)
.

Ainsi,
ln
(
x2 + 1

)
x

= 2
lnx

x
+

1

x
ln

(
1 +

1

x2

)
.

Posons g(x) = ln(1 + x)− x, pur x ⩾ 0.
Alors, g′(x) = 1

1 + x
− 1 < 0 pour x ⩾ 0 donc g est

décroissante sur [0;+∞[.
De plus, g(0) = 0 donc cela signifie que g(x) ⩽ 0 sur
[0;+∞[.
Ainsi, pour x ⩾ 0, ln(1 + x) ⩽ x et donc

ln

(
1 +

1

x2

)
⩽ 1

x2
, soit 1

x
ln

(
1 +

1

x2

)
⩽ 1

x3
.

1

x
> 0 donc 1 +

1

x2
> 1, d’où ln

(
1 +

1

x2

)
> 0 et

finalement 1

x
ln

(
1 +

1

x2

)
> 0.

Ainsi, 0 <
1

x
ln

(
1 +

1

x2

)
⩽ 1

x3
.

On en déduit alors que lim
x→+∞

[
1

x
ln

(
1 +

1

x2

)]
= 0

(théorème des gendarmes).

De plus, lim
x→+∞

lnx

x
= 0 donc

lim
x→+∞

ln
(
x2 + 1

)
x

= 0. (2)

— Finalement, des égalités (1) et (2), on en déduit :

lim
x→+∞

f(x) = 0.



3. D’après la question précédente,

lim
x→−∞

ln
(
x2 + 1

)
x2

= 0.

De plus, en écrivant pour x < 0 :

ln
(
x2 + 1

)
x

= 2
ln |x|
x

+
1

x
ln

(
1 +

1

x2

)
,

On a lim
x→−∞

ln |x|
x

= 0.

De plus, on a toujours 0 < ln

(
1 +

1

x2

)
⩽ 1

x2
et donc

1

x
⩽ 1

x
ln

(
1 +

1

x2

)
< 0 pour x < 0.

Donc, lim
x→−∞

1

x
ln

(
1 +

1

x2

)
= 0 (théorème des gen-

darmes).
Finalement,

lim
x→−∞

ln
(
x2 + 1

)
x

= 0.

Alors,
lim

x→−∞
f(x) = 0.

■Exercice n◦7
Calcul de limites.

1. Nous savons que lim
X→+∞

lnX

X
= 0.

Posons X =
√
x2 − 1. Alors, lim

x→−∞
X = +∞.

De plus, ln
√
x2 − 1

x2 − 1
=

lnX

X2
=

lnX

X
× 1

X
.

Ainsi, lim
x→−∞

(
ln

√
x2 − 1

x2 − 1

)
= lim

X→+∞

(
lnX

X
× 1

X

)
. Or,

lim
X→+∞

1

X
= lim

X→+∞

lnX

X
= 0. Ainsi,

lim
x→−∞

(
ln

√
x2 − 1

x2 − 1

)
= 0.

2.
ln
(
x2 − 2x+ 2

)
(x− 1)2

=
ln
[
(x− 1)2 + 1

]
(x− 1)2

=
ln(X + 1)

X
, avec

X = (x− 1)2.

lim
x→1

X = 0 donc lim
x→1

(
ln
(
x2 − 2x+ 2

)
(x− 1)2

)
=

lim
X→0

ln(1 +X)

X
= 1.

Ainsi,

lim
x→1

(
ln
(
x2 − 2x+ 2

)
(x− 1)2

)
= 1.

3. Posons f(X) = ln
(
1−X2

)
et g(x) = ln (1 +X), avec

X =
1

x
.

Alors, lim
x→+∞

X = 0, et f(0) = g(0) = ln 1 = 0.

f(X)

g(X)
=

f(X)− f(0)

g(X)− g(0)

=
f(X)− f(0)

X − 0
× X − 0

g(X)− g(0)

Par conséquent,

lim
X→0

f(X)

g(X)
= lim

X→0

[
f(X)− f(0)

X − 0
× X − 0

g(X)− g(0)

]
Or, lim

X→0

f(X)− f(0)

X − 0
= f ′(0) et lim

x→0

X − 0

g(X)− g(0)
=

1

g′(0)
.

f ′(X) =
−2X

1−X2
et g′(X) =

1

1 +X
.

Ainsi,

lim
X→0

f(X)

g(X)
=

f ′(0)

g′(0)
=

0

1
= 0

et donc :

lim
x→+∞

 ln

(
1− 1

x2

)
ln

(
1 +

1

x

)
 = 0.

4. On peut écrire :

ln (1 +
√
x)

1−
√
x+ 1

=
ln (1 +

√
x)√

x
×

√
x

1−
√
x+ 1

× 1 +
√
x+ 1

1 +
√
x+ 1

=
ln (1 +

√
x)√

x
×

√
x
(
1 +

√
x+ 1

)
1− (x+ 1)

=
ln (1 +

√
x)√

x
×

√
x
(
1 +

√
x+ 1

)
−x

=
ln (1 +

√
x)√

x
×��

√
x
(
1 +

√
x+ 1

)
−
√
x×��

√
x

=
ln (1 +

√
x)√

x
×

(
−
(
1 +

√
x+ 1

)
√
x

)
.

Par ailleurs,

lim
x→0

ln (1 +
√
x)√

x
= lim

X→0

ln(1 +X)

X
= 1

▶ lim
x→0

√
x = 0+

▶ lim
X→0+

(
− 1

X

)
= −∞

▶ lim
x→0

(
1 +

√
x+ 1

)
= 2

⇒ lim
x→0

−
(
1 +

√
x+ 1

)
√
x

= −∞

Ainsi,

lim
x→0

(
ln (1 +

√
x)

1−
√
x+ 1

)
= −∞.

■Exercice n◦8
Calcul de dérivées.

1. f1(x) = x lnx− x.
La fonction x 7→ x lnx est de la forme uv avec :

u(x) = x ; u′(x) = 1

v(x) = lnx ; v′(x) =
1

x

donc sa dérivée est :

(u′v + uv′)(x) = 1× lnx+ x× 1

x
= lnx+ 1.

Ainsi,

f ′
1(x) = lnx+ 1− 1 soit f ′

1(x) = lnx.



2. f2(x) =
lnx

x
donc f2 est de la forme u

v
avec :

u(x) = lnx ; u′(x) =
1

x
v(x) = x ; v′(x) = 1.

Dès lors,

f ′
2(x) =

u′v − uv′

v2
(x)

=
1
x × x− lnx× 1

x2

f ′
2(x) =

1− lnx

x2
.

3. f3(x) = ln
(
x2
)

donc f3 est de la forme lnu, avec

u(x) = x2 et u′(x) = 2x.

Dès lors,

f ′
3(x) =

u′

u
(x)

=
2x

x2

f ′
3(x) =

2

x
.

4. f4(x) = ln
√
x+ 1 donc f4 est de la forme lnu avec

u(x) =
√
x+ 1.

u est de la forme √
g, avec g(x) = x+ 1 donc

u′(x) =
g′

2
√
g
=

1

2
√
x+ 1

.

Dès lors,

f ′
4(x) =

u′

u
(x)

=

1
2
√
x+1√

x+ 1

f ′
4(x) =

1

2(x+ 1)
.

5. f5(x) =
ln
(
x2 + 1

)
x2 + 1

donc f5 est de la forme u

v
avec :

u(x) = ln
(
x2 + 1

)
et v(x) = x2 + 1.

u est de la forme ln g, avec g(x) = x2 + 1 donc :

u′(x) =
u′

u
(x) =

2x

x2 + 1
.

Dès lors,

f ′
5(x) =

u′v − v′u

v2
(x)

=
2x

x2+1 × (x2 + 1)− 2x× ln
(
x2 + 1

)(
x2 + 1

)2
=

2x− 2x ln(x2 + 1)

(x2 + 1)2

f ′
5(x) =

2x
[
1− ln(x2 + 1)

]
(x2 + 1)2

.

6. f6(x) = ln
(
lnx
)

donc f6 est de la forme lnu avec :

u(x) = lnx et u′(x) =
1

x
.

Dès lors,

f ′
6(x) =

u′

u
(x)

=
1
x

lnx

f ′
6(x) =

1

x lnx
.

■Exercice n◦9
L’étudier de la fonction f définie sur R par :

f(x) =
ln
(
x2 + 1

)
x2 + 1

.

— f(−x) = f(x) et le domaine de définition de f est
centré en 0.
La fonction f est donc paire. On peut donc l’étudier
sur [0;+∞[.

—


lim

x→+∞

(
x2 + 1

)
= +∞

lim
X→+∞

lnX

X
= 0

⇒ lim
x→+∞

f(x) = 0.

De plus, f(0) = ln 1

1
= 0.

— D’après l’exercice précédent,

f ′(x) =
2x
[
1− ln

(
x2 + 1

)]
(x2 + 1)

2 .

Sur [0;+∞[, 2x > 0 donc
f ′(x) est du signe de 1− ln

(
x2 + 1

)
.

1− ln
(
x2 + 1

)
> 0 ⇐⇒ ln

(
x2 + 1

)
< 1

⇐⇒ x2 + 1 < e1

⇐⇒ x2 < e− 1

⇐⇒ 0 < x <
√
e− 1.

On obtient alors le tableau de variations suivant.

x
f ′(x)

f(x)

−∞ −
√
e− 1 0

√
e− 1 +∞

+ 0 − 0 + 0 −

00 e−1e−1

00 e−1e−1

00

Par ailleurs, f
(√

e− 1
)
=

ln(e− 1 + 1)

e− 1 + 1

=
1

e

= e−1

Ci-après la courbe représentative de la fonction f .
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■Exercice n◦10
On considère la fonction f définie par :

f(x) = ln

(
1 +

1

x

)
.

1. Il faut que 1 +
1

x
> 0, ou encore x+ 1

x
> 0. En étudiant

le signe de ce quotient, on obtient :

Df = ]−∞;−1[ ∪ ]0;+∞[ .

2. f ′(x) =
− 1

x2

1 + 1
x

=
−1

x2
(
1 + 1

x

) .

On sait que sur Df , 1 + 1

x
> 0 donc f ′(x) < 0.

Ainsi, f est strictement décroissante sur ]−∞;−1[ et sur
]0;+∞[.

3. lim
x→−∞

1

x
= 0 donc lim

x→−∞
ln

(
1 +

1

x

)
= ln 1 = 0.

De même, lim
x→+∞

f(x) = 0. De plus, lim
x→−1
x<−1

1

x
= −1 et

lim
x→−1
x<−1

(
1 +

1

x

)
= 0+.

Ainsi, par composition, lim
x→−1
x<−1

f(x) = −∞.

Par ailleurs, lim
x→0
x>0

1

x
= +∞ donc lim

x→0
x>0

f(x) = +∞.

On déduit alors le tableau de variations suivant :
x

f(x)

−∞ −1 0 +∞
00

−∞
+∞

00

■Exercice n◦11
On considère la fonction f définie par :

f(x) = (x− 1) ln
(
x2 − 2x+ 1

)
.

1. f est définie pour tout x tel que x2−2x+1 > 0, autrement
dit, lorsque (x− 1)2 > 0.
Ainsi, D = R \ {1}.

2. — On a : lim
x→−∞

(x− 1) = −∞
et lim

x→−∞
ln(x2 − 2x+ 1) = lim

x→−∞
ln(x2) = +∞ donc

lim
x→−∞

f(x) = −∞.

— Par un raisonnement analogue, lim
x→+∞

f(x) = +∞.

— f(x) = (x− 1) ln
[
(x− 1)2

]
.

— Si x > 1, f(x) = 2(x− 1) ln(x− 1).
En posant X = x− 1, on a f(X) = 2X lnX avec
X → 0 quand x → 1.
Or, lim

X→0
X lnX = 0. Donc, lim

x→1
x>1

f(x) = 0.

— Si x < 1, f(x) = −2(1 − x) ln(1 − x). Par un
raisonnement analogue à ce qui précède, en posant
X = 1− x, on obtient : lim

x→1
x<1

f(x) = 0.

3. f ′(x) = ln
(
x2 − 2x+ 1

)
+ (x− 1)× 2x− 2

x2 − 2x+ 1

= ln
[
(x− 1)2

]
+

2(x− 1)2

(x− 1)2

f ′(x) = ln
[
(x− 1)2

]
+ 2.

4. f ′(x) > 0 ⇐⇒ ln
[
(x− 1)2

]
+ 2 > 0

⇐⇒ ln
[
(x− 1)2

]
> −2

⇐⇒ (x− 1)2 > e−2

⇐⇒ (x− 1)2 −
(
e−1
)2

> 0

⇐⇒
(
x− 1− e−1

) (
x− 1 + e−1

)
> 0.

On déduit alors le tableau de signe suivant :

x

x − 1 − e−1

x − 1 + e−1

f ′(x)

−∞ 1− e−1 1 1 + e−1 +∞
− − − 0 +

− 0 + + +

+ 0 − − 0 +

Par ailleurs,
f
(
1− e−1

)
= (1− e−1 − 1) ln

[(
1− e−1 − 1

)2]
= −e−1 ln

(
e−2
)

= −e−1 × (−2)

= 2e−1.

De même, f
(
1 + e−1

)
= −2e−1.

On en déduit alors le tableau de variations suivant :

x

f

−∞ 1− e−1 1 + e−1 +∞

−∞−∞

2e−12e−1

−2e−1−2e−1

+∞+∞
1

0

■Exercice n◦12
Dans cet exercice, on acceptera la propriété suivante :

Pour tous réels a et b, a ln b = ln
(
ba
)
.

On considère la fonction f définie pour tout réel x
strictement positif par :

f(x) = e lnx− x.

1. On sait que lim
x→0

lnx = −∞ donc lim
x→0

(e lnx− x) = −∞.

2. On peut écrire :

f(x) = x

(
e
lnx

x
− 1

)
.



On sait que (croissance comparée) : lim
x→+∞

lnx

x
= 0 donc

lim
x→+∞

(
e
lnx

x
− 1

)
= −1.

Ainsi, par produit, lim
x→+∞

f(x) = −∞.

3. f ′(x) =
e

x
− 1 =

e− x

x
. Ainsi,

sur ]0; e[, f ′(x) > 0 et sur ]e; +∞[, f ′(x) < 0.
On déduit alors le tableau de variations suivant :

x

f ′(x)

f

0 e +∞

+ 0 −

−∞

00

−∞−∞

4. On remarque sur le tableau de variations que pour tout
réel x strictement positif et différent de e, f(x) < 0.
Ainsi,

f(π) < 0,

autrement dit,
e lnπ < π

soit,
lnπe < π.

En composant par la fonction exponentielle, qui est stric-
tement croissante, on obtient :

elnπe

< eπ,

soit,
πe < eπ.

■Exercice n◦13
Lorsque l’on prend des antibiotiques, la concentration
de bactéries présentes dans le corps d’une personne
malade diminue avec le temps en suivant le modèle
d’une fonction f définie, pour 0 ⩽ t ⩽ 6, par :

f(t) = aekt+b , a, b, k étant trois réels, avec a 6= 0,

où t désigne le temps (exprimé en jour) et où f(t)
représente le taux de bactéries restantes.
Ainsi, f(0) = 1. On suppose que la totalité des bacté-
ries sont éliminées après 6 jours. Donc f(6) = 0.

1. — On sait que f(0) = 1 donc aek×0+b = 1, soit a+b = 1,
ou encore b = 1− a.

— De plus, f(6) = 0 donc ae6k+b = 0, soit ae6k = −b =

a− 1. Ainsi, e6k = 1− 1

a
et donc 6k = ln

(
1− 1

a

)
.

Finalement, k =
1

6
ln

(
1− 1

a

)
.

On obtient alors :

f(t) = ae
1
6 ln(1− 1

a )t + 1− a

2. 50% des bactéries disparaissent au bout de deux jours,
donc f(2) =

1

2
, soit :

ae
1
6 ln(1− 1

a )×2 + 1− a =
1

2
.

Ainsi,
e

1
3 ln(1− 1

a ) +
1

2
− a = 0.

3. Si on pose h(x) = xe
1
3 ln(1− 1

x ), alors h est de la forme uv
avec :

u(x) = x et v(x) = e
1
3 ln(1− 1

x )

avec u′(x) = 1 et

v′(x) =
1

3
×

1
x2

1− 1
x

e
1
3 ln(1− 1

x )

=
1

3x2
× x

x− 1
e

1
3 ln(1− 1

x )

=
1

3x
× 1

x− 1
e

1
3 ln(1− 1

x ).

Dès lors,

h′(x) = (u′v + uv′)(x)

= 1× e
1
3 ln(1− 1

x ) + x× 1

3x
× 1

x− 1
× e

1
3 ln(1− 1

x )

= e
1
3 ln(1− 1

x )
(
1 +

1

3x− 3

)
.

En conséquence, g′(x) = h′(x)− 1 soit

g′(x) = e
1
3 ln(1− 1

x )
(
1 +

1

3x− 3

)
− 1.

4. (a) — lim
x→+∞

(
1 +

1

3x− 3

)
= 1 ;

— lim
x→+∞

(
1− 1

x

)
= 1 et lim

X→1
lnX = 0. Ainsi, par

composition, on obtient : lim
x→+∞

ln

(
1− 1

x

)
= 0.

De plus, lim
Y→0

eY = 1 donc lim
x→+∞

e
1
3 ln(1− 1

x ) = 1.

En conséquence, par produit,

lim
x→+∞

e
1
3 ln(1− 1

x )
(
1 +

1

3x− 3

)
= 1.

Finalement,
lim

x→+∞
g′(x) = 0.

(b) Si x > 1, alors 9x(x−1) > 0 et donc −2

9x(x− 1)
< 0.

De plus, une exponentielle est toujours strictement
positive, donc g′′(x) < 0 sur ]1;+∞[.
Par conséquent, g′ est strictement décroissante sur
]1;+∞[ et donc, d’après la question précédente,
g′(x) > 0 sur cet intervalle.
On en déduit que g est strictement croissante sur
]1;+∞[.

5. g(1,3) ≈ −0,002 612 69 < 0 et g(1,4) ≈ 0,022 087 258 > 0
donc 0 est une valeur intermédiaire de g(1,3) et g(1,4).
De plus, g est continue et strictement monotone sur
[1,3; 1,4] donc d’après le théorème des valeurs intermé-
diaires (ou le théorème de bijection), l’équation g(x) = 0
admet une unique solution sur [1,3; 1,4].

■Exercice n◦14
Soit f la fonction définie pour tout réel x > −1 par :

f(x) = (x+ 1) ln(x+ 1)− 6x− 1.



1. — Calcul de lim
x→−1

f(x).

On sait que lim
X→0

X ln(X) = 0. Donc, en posant
X = x + 1, on obtient lim

x→−1
(x+ 1) ln(x+ 1) = 0

(autrement dit par composition).
De plus, lim

x→−1
(−6x− 1) = 5.

En conséquence, par somme, lim
x→−1

f(x) = 5.
— Calcul de lim

x→+∞
f(x).

On commence par factoriser f(x) par x :

f(x) = x

(
x+ 1

x
ln(x+ 1)− 6− 1

x

)
= x

((
1 +

1

x

)
ln(x+ 1)− 6− 1

x

)
.

Or, lim
x→+∞

(
1 +

1

x

)
= 1 et lim

x→+∞
ln(x+ 1) = +∞

donc, par produit,

lim
x→+∞

(
1 +

1

x

)
ln(x+ 1) = +∞.

De plus, lim
x→+∞

(
−6− 1

x

)
= −6.

Par ailleurs, par somme,

lim
x→+∞

[(
1 +

1

x

)
ln(x+ 1)− 6− 1

x

]
= +∞.

On en déduit alors, par produit, que lim
x→+∞

f(x) =

+∞.
2. Calculons f ′(x).

— On commence par dériver g : x 7→ (x+ 1) ln(x+ 1),
qui est de la forme u× v, où :

u(x) = x+ 1 v(x) = ln(x+ 1)

u′(x) = 1 v′(x) =
1

x+ 1
.

Dès lors,

g′(x) = (u′v + v′u)(x)

= 1× ln(x+ 1) + (x+ 1)× 1

x+ 1

= ln(x+ 1) + 1.

— On en déduit la dérivée de f(x) par somme :

f ′(x) = g′(x) + (−6x− 1)′

= ln(x+ 1) + 1− 6

f ′(x) = ln(x+ 1)− 5.

3. — Déterminons le signe de f ′(x). Pour cela, résolvons
par exemple l’inéquation suivante :

f ′(x) > 0 ⇐⇒ ln(x+ 1)− 5

⇐⇒ ln(x+ 1) > 5

⇐⇒ eln(x+1) > e5

⇐⇒ x+ 1 > e5

⇐⇒ x > e5 − 1.

— On en déduit le tableau de signes de f ′(x), puis le
tableau de variations de f .

x

f ′(x)

f

−1 e5 − 1 +∞

− 0 +

55 +∞+∞

4. — Montrons que l’équation f(x) = 0 admet une unique

solution sur
[
−1

2
; 0

]
. Sur cet intervalle,

— f est continue et strictement décroissante ;

— de plus, f

(
−1

2

)
≈ 1,65 et f(0) = −1 donc

« 0 » est une valeur intermédiaire entre f

(
−1

2

)
et f(0).

Ainsi, d’après le théorème des valeurs intermédiaires,
l’équation f(x) = 0 admet une unique solution sur[
−1

2
; 0

]
. Notons-la α.

À la calculatrice, on trouve α ≈ −0,196.
— Montrons que l’équation f(x) = 0 admet une unique

solution sur [395; 400]. Sur cet intervalle,
— f est continue et strictement croissante ;
— de plus, f (395) ≈ −2,36 et f(400) = 2,58 donc

« 0 » est une valeur intermédiaire entre f (395) et
f(400).

Ainsi, d’après le théorème des valeurs intermédiaires,
l’équation f(x) = 0 admet une unique solution sur
[395; 400]. Notons-la β.
En utilisant la calculatrice, on obtient : β ≈ 397,397.

■Exercice n◦15
A : étude d’une fonction auxiliaire
On considère la fonction h définie sur [0;+∞[ par :

h(x) = lnx+
x2 − x+ 1

2x2
.

Partie A :
1. h est une somme de deux fonctions dérivables sur

]0;+∞[, donc elle est aussi dérivable sur ]0;+∞[.

h′(x) =
1

x
+

(2x− 1)(2x2)− 4x(x2 − x+ 1)

4x4

=
1

x
+

4x3 − 2x2 − 4x3 + 4x2 − 4x

4x4

=
1

x
+

2x2 − 4x

4x4

=
1

x
+

x− 2

2x3

h′(x) =
2x2 + x− 2

2x3
.

2. Le discriminant du polynôme P (x) = 2x2 + x− 2 est :

∆ = 1− 4× 2× (−2) = 17.

Il y a donc deux racines :

x1 =
−1−

√
17

4
; x2 =

−1 +
√
17

4



P (x) est du signe opposé de « 2 » entre les deux racines.
Or, x1 < 0. Donc, h′(x) < 0 sur ]0;x2[ et h′(x) > 0 sur
]x2; +∞[.

3. On a le tableau suivant :

x

h′(x)

h

0 x2 +∞

− 0 +

Par ailleurs,

h(x2) = ln

(√
17− 1

4

)
+

(√
17−1
4

)2
−
(√

17−1
4

)
+ 1

2
(√

17−1
4

)2
≈ 0,43 > 0.

En conséquence, h(x) > 0 sur ]0;+∞[.

Partie B :

1. f est dérivable sur ]0;+∞[ comme somme d’une fonction
dérivable sur ]0;+∞[ (x 7→ −x) et d’un produit de deux
fonctions dérivables sur ]0;+∞[ (x 7→ x2+1 et x 7→ lnx).
Ainsi,

f ′(x) = 2x lnx+
(
x2 + 1

)
× 1

x
− 1

= 2x lnx+
x2 + 1

x
− 1

= 2x lnx+
x2 − x+ 1

x

f ′(x) = 2x

(
lnx+

x2 − x+ 1

2x2

)
.

Dès lors,

∀x > 0, f ′(x) > 0 ⇐⇒ 2x

(
lnx+

x2 − x+ 1

2x2

)
> 0

⇐⇒ 2xh(x) > 0

⇐⇒ h(x) > 0.

2. Dans la partie précédente, nous avons vu que sur ]0;+∞[,
h(x) > 0.
Ainsi, f est strictement croissante sur ]0;+∞[.

3. (a) f(x) = x× x lnx+ lnx− x.
Or, lim

x→0
x lnx = 0 et lim

x→0
lnx = −∞. Donc,

lim
x→0

f(x) = −∞.

(b) f(x) = x

[(
x+

1

x

)
lnx− 1

]
.

Or, lim
x→+∞

(
x+

1

x

)
= +∞ et lim

x→+∞
lnx = +∞.

Donc, lim
x→+∞

[(
x+

1

x

)
lnx− 1

]
= +∞.

En conséquence, lim
x→+∞

f(x) = +∞.

(c) Des questions précédentes, on déduit le tableau sui-
vant :

x

f ′(x)

f

0 +∞

+

−∞
+∞+∞

4. (a) f est dérivable et strictement croissante sur ]0;+∞[.
De plus, lim

x→0
f(x) < 0 et lim

x→+∞
f(x) > 0.

Ainsi, d’après le théorème des valeurs intermé-
diaires, il existe une unique valeur α sur ]0;+∞[
telle que f(α) = 0.

(b) f(1) = 2 ln 1 − 1 = −1 < 0 et f(2) = 5 ln 2 − 2 > 0
donc 1 < α < 2.

(c) En utilisant la calculatrice, on obtient : α ≈ 1,6.


