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Corrigés

Série d’exercices Classe : Tle Spé Maths Lycée : Evariste Galois

Loi des grands nombres

�Exercice n◦1
D’après la propriété sur la somme des variables aléa-
toires indépendantes,

E(S5) =

5∑
k=1

E(Xk).

Or, pour tout entier k compris entre 1 et 5,

E(Xk) = 1 000× 0,75 = 750.

Par conséquent, E(S5) = 5× 750 = 3 750.

�Exercice n◦2

1. Notons x = P (X = 0). La loi de probabilité de X
est :

X = k 0 2 5 7

P (X = k) x
3

5
x

1

2
x

1

5
x

La somme des probabilités est égale à 1 donc :

x+
1

2
x+

3

5
x+

1

5
x = 1 ⇐⇒ 23

10
x = 1

⇐⇒ x =
10

23
.

D’où :
X = k 0 2 5 7

P (X = k)
10

23

6

23

5

23

2

23

2. E(X) = 2× 6

23
+ 5× 5

23
+ 7× 2

23
=

51

23
.

3. Notons Xk la variable aléatoire représentant le
nombre de minutes de retard du train d’Hubert
le jour k, 1 6 k 6 20.

Posons alors : M20 =
X1 +X2 + · · ·+X20

20
.

Alors,

E(M20) =
E(X1 +X2 + · · ·+X20)

20

=
E(X1) + E(X2) + · · ·+ E(X20)

20

=
20× 51

23

20

=
51

23
≈ 2,22.

Ainsi, le retard moyen du train d’Hubert sur les
20 jours est d’environ 2 min 13 s.

�Exercice n◦3
Parmi les propositions suivantes, quelles sont celles qui
sont exactes ?

1. Faux. Selon l’inégalité de Markov, P (X > a) 6 E(X)

a
,

ce qui donne dans notre cas :

P (X > 10) 6 9

10
.

2. Vrai. En effet, d’après l’inégalité de Bienaymé-
Tchebychev,

P
(
|X − E(X)| > δ

)
6 V (X)

δ2

ce qui donne dans notre cas :

P
(
|X − 7| > 18

)
6 9

182

soit :
P
(
|X − 7| > 18

)
6 1

36
< 0,028.

3. Faux. Notons Xk le nombre de points lors du k-ième ti-
rage. Xk = 0 ou Xk = 1. C’est une variable de Bernoulli.
En répétant cette expérience (implicitement de manière
indépendante), on constitue un schéma de Bernoulli dont
la moyenne est :

µ = np = 1000× 4

32
= 125

et de variance σ2 = np(1− p) = 109,375 =
875

8
. D’après

l’inégalité de concentration,

P

(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > δ

)
6 σ2

nδ2
,

ce qui donne dans notre cas, en prenant δ = 5 :

P

(∣∣∣∣X1 + · · ·+Xn

n
− 125

∣∣∣∣ > 5

)
6 109,375

1 000× 52

soit :

P

(∣∣∣∣X1 + · · ·+Xn

n
− 125

∣∣∣∣ > 5

)
6 0,004375.

On ne peut donc pas assurer que la probabilité pour que
la différence entre la moyenne des gains et 125 soit supé-
rieure ou égale à 5 est toujours inférieure à 0,001.

�Exercice n◦4
On jette 3 600 fois un dé équilibré. Minorer la proba-
bilité que le nombre d’apparitions du numéro 1 soit
compris entre 480 et 720 à l’aide de l’inégalité de
Bienaymé-Tchebychev.

Soit S la variable aléatoire comptant le nombre d’apparitions
du chiffre 1 au cours de ces lancers. S suit une loi binomiale
de paramètres 3 600 et 1

6
. On sait donc que :

E(S) = 600 et V (S) = 500.
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De plus,

480 < S < 720 ⇐⇒ −120 < S−600 < 120 ⇐⇒ |S−600| < 120.

Par l’inégalité de Bienaymé-Tchebichev, on obtient :

P (|S − 600| > 120) 6 500

1202
6 0,035.

On en déduit que :

P (480 < S < 720) > 1− 0,035

soit :
P (480 < S < 720) > 0,965.

En particulier, la probabilité que le numéro 1 apparaisse entre
480 et 720 fois au cours de ces 3 600 lancers est supérieure à
0,96.

�Exercice n◦5
On suppose que le nombre de pièces sortant d’une
usine donnée en l’espace d’une semaine est une va-
riable aléatoire d’espérance 50.

1. Commençons par poser X la variable aléatoire représen-
tant le nombre de pièces sortant de l’usine en l’espace
d’une semaine.
D’après l’inégalité de Markov,

P (X > 75) 6 50

75

soit :
P (X > 75) 6 0,67.

2. Commençons par écrire :

P (40 < X < 60) = P (−10 < X−50 < 10) = P (|X−50| < 10).

L’inégalité de Bienaymé-Tchebytchev donne :

P
(
|X − 50| > 10

)
6 25

102

soit :
P
(
|X − 50| > 10

)
6 0,25.

On en déduit alors que :

1− P
(
|X − 50| < 10

)
6 0,25

et donc :
P
(
|X − 50| < 10

)
> 0,75.

La probabilité pour que la production de la semaine sui-
vante soit comprise entre 40 et 60 est donc au moins de
75%.

�Exercice n◦6
Le nombre de pièces sortant d’une usine en une jour-
née est une variable aléatoire d’espérance 50. On veut
estimer la probabilité que la production de demain dé-
passe 75 pièces.

1. Notons X la variable aléatoire représentant le nombre de
pièces. En utilisant l’inégalité de Markov, on obtient :

P (X > 75) 6 E(X)

75

soit :
P (X > 75) 6 2

3
.

2. L’inégalité de Bienaymé-Tchebychev donne :

P (|X − 50| > 25) 6 V (X)

252

soit :
P (|X − 50| > 25) 6 52

252

et donc :
P (|X − 50| > 25) 6 0,04.

�Exercice n◦7
On utilise l’inégalité de Bienaymé-Tchebychev :

P (|X − 102| > 103 − 102) 6 V (X)(
103 − 102

)2
pour trouver finalement :

P (|X − 102| > 103 − 102) 6 0,000 123 456 790 123.

Ainsi, P (X > 103) 6 0,000 124.

�Exercice n◦8
Une usine fabrique des pièces dont une proportion in-
connue p est défectueuse, et on souhaite trouver une
valeur approchée de p. On effectue un prélèvement de
n pièces. On suppose que le prélèvement se fait sur un
échantillon très grand et donc qu’il peut s’apparenter
à une suite de n tirages indépendants avec remise.
On note Xn la variable aléatoire égale au nombre de
pièces défectueuses et on souhaite quantifier le fait que
Xn

n
approche p.

1. Xn est la somme de n variables aléatoires de Bernoulli
indépendantes de paramètre p. Ainsi, Xn suit la loi bi-
nomiale B(n; p). On en déduit alors que :

E(Xn) = np et V (Xn) = np(1− p).

2. D’après l’inégalité de concentration,

∀δ > 0, P
(
|Xn − np| > δ

)
6 np(1− p)

δ2
.

Or,

|Xn − np| > δ ⇐⇒
∣∣∣∣Xn

n
− p

∣∣∣∣ > δ

n

En posant ε =
δ

n
, on obtient alors :

∀ε > 0, P

(∣∣∣∣Xn

n
− p

∣∣∣∣ > ε

)
6 np(1− p)

n2ε2

que l’on peut aussi écrire, en simplifiant par n le dernier
membre, sous la forme :

∀ε > 0, P

(∣∣∣∣Xn

n
− p

∣∣∣∣ > ε

)
6 1

nε2
p(1− p).

De plus, la fonction p 7→ p(1−p) définie sur [0; 1] est une
fonction de degré 2 admettant un maximum pour p =

1

2

qui vaut 1

4
, donc :

p(1− p) 6 1

4
.



L’inégalité devient alors :

∀ε > 0, P

(∣∣∣∣Xn

n
− p

∣∣∣∣ > ε

)
6 1

4nε2
.

3. On cherche ici un entier n tel que :

P

(∣∣∣∣Xn

n
− p

∣∣∣∣ < 10−2

)
> 0,95

que l’on peut aussi écrire, en considérant l’événement
contraire :

P

(∣∣∣∣Xn

n
− p

∣∣∣∣ > 10−2

)
6 0,05.

D’après l’inégalité obtenue à la question précédente, il
suffit donc de trouver un entier n tel que :

1

4n
(
10−−2

)2 6 0,05.

On trouve alors n > 50 000.

�Exercice n◦9
On lance de manière indépendante n fois un dé équi-
libré à six faces.

Commençons par poser X la variable aléatoire représentant
le nombre de « 1 » obtenus.
X suit alors la loi B

(
n; 1

6

)
et a donc une es-

pérance égale à n

6
et une variance égale à

np(1− p) =
5n

36
.

On nous demande ici de trouver un entier n tel que :

P
(
0 6 X 6 n

3

)
> 0,99.

L’inégalité de Bienaymé-Tchebychev nous dit que :

∀δ > 0, P
(∣∣∣X − n

6

∣∣∣ > δ
)
6 5n

36δ2

⇐⇒ P
[(

X − n

6
6 −δ

)
∪
(
X − n

6
> δ

)]
6 5n

36δ2

⇐⇒ 1− P
(
−δ 6 X − n

6
6 δ

)
6 5n

36δ2

∀δ > 0, ⇐⇒ P
(
−δ 6 X − n

6
6 δ

)
> 1− 5n

36δ2
.

On aimerait arriver à une inégalité avec P
(
0 6 X 6 n

3

)
; cela

nous pousse à prendre δ =
n

6
pour obtenir :

P
(
0 6 X 6 n

3

)
> 1− 5

n
.

Ainsi, il suffit de choisir un n tel que :

1− 5

n
> 0,99 ⇐⇒ n > 500.

Nous sommes donc assurés que pour n > 500, notre probabi-
lité est supérieure à 0,99.

�Exercice n◦10
On souhaite démontrer l’inégalité de Markov stipulant
que pour une variable aléatoire discrète d’espérance
finie X à n valeurs positives,

∀a > 0, P (X > a) 6 E(X)

a
.

On note :

E(X) =

n∑
k=1

xkP (X = xk).

1. On peut « couper » la somme désignant l’espérance de
X en deux sommes : la première comportant toutes les
valeurs de X inférieures strictement à a et la seconde
comportant les valeurs de X supérieures ou égales à a,
ce qui donne :

E(X) =
∑
xk>a

xkP (X = xk) +
∑
xk<a

xkP (X = xk).

2. On sait que X > 0 donc, pour tout entier k compris
entre 1 et n, xk > 0. De plus, une probabilité est toujours
supérieure ou égale à 0.
Ainsi, pour tout entier k ∈ [1;n], xkP (X = xk) > 0, ce
qui implique que :∑

xk<a

xkP (X = xk) > 0.

3. De la question précédente, on déduit que :

E(X) >
∑
xk>a

xkP (X = xk).

Or, dans cette somme, xk > a, ce qui implique :

E(X) >
∑
xk>a

aP (X = xk)

soit :
E(X) > a

∑
xk>a

P (X = xk).

De plus, par définition :∑
xk>a

P (X = xk) = P (X > a)

ce qui implique alors :

E(X) > aP (X > a).

On en déduit alors, en divisant par a 6= 0 :

E(X)

a
> P (X > a).

�Exercice n◦11
On se propose dans cet exercice de démontrer l’inéga-
lité de Bienaymé-Tchebychev, stipulant que si X est
une variable aléatoire discrète d’espérance µ et de va-
riance V (X) alors, quel que soit le réel δ > 0,

P
(
|X − µ| > δ

)
6 V (X)

δ2
.

Pour cela, on considère la variable Y =
[
X −E(X)

]2.



Par définition, Y est une variable aléatoire à valeurs positives
et :

E(Y ) = E
[
(X − E(X)2

]
= V (X).

L’inégalité de Markov appliquée à Y donne alors :

∀a > 0, P (Y > a) 6 E(Y )

a

⇐⇒ ∀a > 0, P
((

X − E(X)
)2 > a

)
6 V (X)

a
.

Posons alors a = δ2 avec δ > 0. On obtient alors :

∀δ > 0, P
((

X − E(X)
)2 > δ2

)
6 V (X)

δ2
.

Or, (
X − E(X)

)2 > δ2 ⇐⇒
∣∣X − E(X)

∣∣ > δ

car δ > 0. Cela donne alors :

∀δ > 0, P
(∣∣X − E(X)

∣∣ > δ
)
6 V (X)

δ2
.

�Exercice n◦12
Soit X une variable aléatoire réelle. On suppose que
X admet une espérance E(X) = µ et une variance
V (X) = σ2. Soit a > 0.

1. On a :

X − µ > a ⇐⇒ X − µ+ λ > a+ λ

donc la probabilité des deux événements (X − µ > a) et
(X − µ+ λ > a+ λ) sont égales.

2. Par linéarité de l’espérance, on a :

E
(
(X − µ+ λ)2

)
= E

(
(X − µ)2 + 2(X − µ)λ+ λ2

)
= E

(
(X − µ)2

)︸ ︷︷ ︸
=V (X)

+2λE(X − µ)︸ ︷︷ ︸
=0

+λ2

= σ2 + λ2.

3. Dans un premier temps, on a :

P (X − µ > a) = P (X − µ+ λ > a+ λ).

Or,

P (X − µ+ λ > a+ λ) 6 P
(
(X − µ+ λ)2 > (a+ λ)2

)
.

Ainsi,

P (X − µ > a) 6 P
(
(X − µ+ λ)2 > (a+ λ)2

)
.

En appliquant l’inégalité de Markov à la variable aléa-
toire (X − µ+ λ)2, on obtient :

P
(
(X − µ+ λ)2 > (a+ λ)2

)
6

E
[
(X − µ+ λ)2

]
(a+ λ)2

.

Ainsi,

P (X − µ > a) 6
E
[
(X − µ+ λ)2

]
(a+ λ)2

d’où :
P (X − µ > a) 6 σ2 + λ2

(a+ λ)2
.

4. Posons f(λ) =
σ2 + λ2

(a+ λ)2
, avec λ > 0.

Sa dérivée vaut :

f ′(λ) = 2
aλ− σ2

(a+ λ)3
.

On en déduit que f ′(λ) > 0 ⇐⇒ λ >
σ2

a
.

Notamment, f admet un minimum en λ =
σ2

a
, et ce

minimum vaut σ2

σ2 + a2
.

Ainsi,

P (X − µ > a) 6 σ2 + λ2

(a+ λ)2
6 σ2

σ2 + a2
.

On peut écrire :(
|X − µ| > a

)
=

(
X − µ > a

)
∪
(
µ−X > a

)
.

Les deux événements
(
X − µ > a

)
et

(
µ−X > a

)
étant

disjoints,

P
(
|X − µ| > a

)
= P

(
X − µ > a

)
+ P

(
µ−X > a

)
.

À l’aide de la question précédente, appliquée à X − µ et
à µ−X, on obtient :

P
(
|X − µ| > a

)
6 σ2

σ2 + a2
+

σ2

σ2 + a2

soit :
P
(
|X − µ| > a

)
6 2σ2

σ2 + a2
.

5. Cette dernière inégalité est meilleure que l’inégalité de
Bienaymé-Tchebychev si :

2σ2

σ2 + a2
<

σ2

a2
⇐⇒ 2

σ2 + a2
<

1

a2

⇐⇒ σ2 + a2

2
> a2

⇐⇒ σ2 + a2

2
>

2a2

2

⇐⇒ σ2 > a2

⇐⇒ a < σ car a et σ sont positifs.

�Exercice n◦13
On dispose d’une urne dans laquelle sont mises 7
boules rouges et 3 noires. On tire au hasard une boule
de cette urne et on la remet dans l’urne ; si la boule
choisie est noire, on gagne 1 point. Sinon, on ne gagne
pas de point.
On note Mn le gain moyen de points après n répéti-
tions indépendantes de cette expérience.

‘ On cherche un entier n tel que :

P
(
|Mn − 0,3| > 0,1

)
6 0,5.

Notons Xk le nombre de points gagnés au k-ième tirage, 1 6
k 6 n.

Xk suit la loi de Bernoulli de probabilité p =
3

10
= 0,3 et de

variance σ2 = 0,3× (1− 0,3) = 0,21.



De plus, par définition, les Xk sont
indépendantes donc on peut utiliser
l’inégalité de concentration :

P (|Mn − 0,3| > 0,1) 6 0,21

0,12n
.

On souhaite que P (|Mn − 0,3| > 0,1) 6 0,5 donc il suffit de
choisir n tel que :

0,21

0,12n
6 0,5 ⇐⇒ 0,12n

0,21
> 1

0,5

⇐⇒ 0,12n > 1

0,5
× 0,21

0,21

0,12n
6 0,5 ⇐⇒ n > 1

0,5
× 0,21

0,12

⇐⇒ n > 42.

�Exercice n◦14
On lance n fois un dé à 6 faces et on regarde la fré-
quence d’obtention de la face « 6 ».

D’après le théorème de Khintchine (loi
faible des grands nombres), si on note pour
1 6 k 6 n :{

Xk = 1 si on obtient un « 6 »
Xk = 0 Si on n’obtient pas un « 6 »

où les Xk sont indépendantes et suivent la même loi de Ber-
noulli de probabilité 1

6
et donc d’espérance µ =

1

36
, on peut

écrire pour tout δ > 0 :

lim
n→+∞

P

(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > δ

)
= 0

ce qui signifie que la fréquence X1 + · · ·+Xn

n
se rapprochera

de µ =
1

6
quand n deviendra de plus en plus grand.

�Exercice n◦15
On considère une marche aléatoire sur Z définie de la
façon suivante : on part de 0 et, à chaque étape,

— on a une probabilité p de faire un pas vers la
droite ;

— on a une probabilité 1− p de faire un pas vers
la gauche.

Autrement dit, on considère une suite de variables
aléatoires (Xn)n>1 indépendantes et de même loi don-
née par :

∀n ∈ N∗, P (Xn = 1) = p et P (Xn = −1) = 1− p.

On note Sn = X1 + · · ·+Xn.

1. Regardons les premières valeurs de Sn :
— S1 ∈ {−1; 1} car X1 ne peut prendre pour valeurs

que −1 ou 1 ;
— S2 ∈ {−1−1;−1+1; 1−1; 1+1} soit S2 ∈ {−2; 0; 2} ;

— S3 ∈ {−3;−1; 1; 3}.
On s’aperçoit que Sn est la position à laquelle nous nous
trouvons dans Z à la fin de l’étape n.

2. µ = E(Xk) = 1× P (Xk = 1) + (−1)× P (Xk = −1) = 1× p+ (−1)× (1− p) = 2p− 1.

3. Sn

n
=

X1 + · · ·+Xn

n
et d’après le théorème de Khint-

chine (loi faible des grands nombres),

∀δ > 0, lim
n→+∞

P

(∣∣∣∣Sn

n
− µ

∣∣∣∣ > δ

)
= 0.

Cela signifie donc que lim
n→+∞

Sn

n
= 2p− 1.

�Exercice n◦16
On se propose dans cet exercice de démontrer l’inéga-
lité de concentration qui stipule que si X1, X2, . . . , Xn

sont n variables aléatoires discrètes réelles indépen-
dantes ayant toutes la même loi d’espérance µ et de
variance σ2 alors,

P

(∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > δ

)
6 σ2

nδ2
.

On pose Mn =
X1 +X2 + · · ·+Xn

n
.

1. Par linéarité de l’espérance, on a :

E(Mn) = E

(
X1 + · · ·+Xn

n

)
=

1

n
E(X1 + · · ·+Xn)

=
1

n

[
E(X1) + · · ·+ E(Xn)

]
=

1

n
(µ+ · · ·+ µ) =

1

n
× nµ

E(Mn) = µ.

De plus, comme les Xk sont indépendantes, on a :

V (Mn) = V

(
X1 + · · ·+Xn

n

)
=

1

n2
V (X1 + · · ·+Xn)

=
1

n2

[
V (X1) + · · ·+ V (Xn)

]
=

1

n
(σ2 + · · ·+ σ2) =

σ2

n
.

2. D’après l’inégalité de Bienaymé-Tchebychev appliquée à
Mn, pour tout δ > 0, on a :

P
(
|Mn − µ| > δ

)
6 σ2

nδ2
.


