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I’espace

L'essentiel : Tle Spé

Vecteur dans l’espace Relation de Chasles

Soient A et B deux points de l'espace, la transformation

qui a tout point M de 'espace associe I'unique point M’ tel

que ABM'M soit un parallélogramme s’appelle la transla-
!

Comme dans un plan, si A, B et C sont trois points de

B

I'espace alors on a : AC = AB + BC.
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Vecteurs colinéaires

Deux vecteurs de 1’espace sont dits colinéaires s’ils ont la
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Vecteurs coplanaires

Soient @ et ¥ deux vecteurs de 1'espace.
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méme direction. Par exemple, 7 et ¢ sont colinéaires.
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e On dit que W est une combinaison linéaire de « et ¥'s’il
existent deux réels A et u tels que : @ = A\ + pv.

e On dit aussi que les trois vecteurs #, ¥ et & sont copla-
naires.
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Positions relatives
<> Dans un espace, deux droites sont soit sécantes, soit paralleles soit non coplanaires.
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@ (AF)let (AB) sont sécantes @ (AH) et (BG) sont paralléles ® (AF) et (BC) sont non coplanaires
<> Dans un espace, deux plans sont soit sécants (leur intersection est une droite), soit paralleles.
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@ (AEH) et (CDG) sont sécants @ (ADH) et (BFG) sont paralelles ® (ADE) et (EHD) sont confondus
< Dans un espace, une droite et un plan de I’espace sont soit sécants, soit paralleles.
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\_ @ (AH) et (CDG) sont sécants @ (AH) et (BCG) sont pralleles ® (AH) est incluse dans (AEH)
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Représentation paramétrique d’une droite dans un repere orthonormé de I'espace

Soit D la droite passant par le point A de coordonnées (x4 ;ya ;2z4) et de vecteur directeur # de coordonnées (a ;b ;).

M(z;y;2) € D <= Il exite unréel ¢ tel que /W/I =t —

r=x+at
y=ya+bt, teck

z=2zp+ct




